Suppr超能文献

在病例对照研究中直接和使用汇总统计数据估计基于 SNP 的遗传力和遗传相关性。

Estimating SNP-Based Heritability and Genetic Correlation in Case-Control Studies Directly and with Summary Statistics.

机构信息

Statistics Department, Tel Aviv University, Ramat Aviv 6997801, Israel; Computer Science Department, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90405, USA.

出版信息

Am J Hum Genet. 2018 Jul 5;103(1):89-99. doi: 10.1016/j.ajhg.2018.06.002.

Abstract

Methods that estimate SNP-based heritability and genetic correlations from genome-wide association studies have proven to be powerful tools for investigating the genetic architecture of common diseases and exposing unexpected relationships between disorders. Many relevant studies employ a case-control design, yet most methods are primarily geared toward analyzing quantitative traits. Here we investigate the validity of three common methods for estimating SNP-based heritability and genetic correlation between diseases. We find that the phenotype-correlation-genotype-correlation (PCGC) approach is the only method that can estimate both quantities accurately in the presence of important non-genetic risk factors, such as age and sex. We extend PCGC to work with arbitrary genetic architectures and with summary statistics that take the case-control sampling into account, and we demonstrate that our new method, PCGC-s, accurately estimates both SNP-based heritability and genetic correlations and can be applied to large datasets without requiring individual-level genotypic or phenotypic information. Finally, we use PCGC-s to estimate the genetic correlation between schizophrenia and bipolar disorder and demonstrate that previous estimates are biased, partially due to incorrect handling of sex as a strong risk factor.

摘要

方法,估计 SNP 为基础的遗传率和遗传相关性从全基因组关联研究已经被证明是强大的工具,用于调查常见疾病的遗传结构和暴露之间的意外关系障碍。许多相关的研究采用病例对照设计,但大多数方法主要针对分析数量性状。在这里,我们调查三种常见的方法,用于估计 SNP 为基础的遗传率和疾病之间的遗传相关性的有效性。我们发现表型相关基因型相关(PCGC)的方法是唯一的方法,可以估计两个数量准确存在重要的非遗传危险因素,如年龄和性别。我们扩展 PCGC 工作与任意遗传结构和与总结统计,考虑到病例对照抽样,我们证明我们的新方法,PCGC-s,准确估计 SNP 为基础的遗传率和遗传相关性,可以应用于大型数据集,而不需要个人水平的基因型或表型信息。最后,我们使用 PCGC-s 估计精神分裂症和双相情感障碍之间的遗传相关性,并证明以前的估计是有偏差的,部分原因是不正确的处理性别作为一个强有力的风险因素。

相似文献

2
Measuring missing heritability: inferring the contribution of common variants.测量缺失的遗传力:推断常见变异的贡献。
Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):E5272-81. doi: 10.1073/pnas.1419064111. Epub 2014 Nov 24.
5
6
Reevaluation of SNP heritability in complex human traits.复杂人类性状中SNP遗传力的重新评估。
Nat Genet. 2017 Jul;49(7):986-992. doi: 10.1038/ng.3865. Epub 2017 May 22.

引用本文的文献

本文引用的文献

1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验