一种可扩展且稳健的方差分量方法揭示了复杂性状背后基因-环境相互作用的结构见解。

A scalable and robust variance components method reveals insights into the architecture of gene-environment interactions underlying complex traits.

机构信息

Department of Computer Science, UCLA, Los Angeles, CA, USA; Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Department of Computer Science, UCLA, Los Angeles, CA, USA.

出版信息

Am J Hum Genet. 2024 Jul 11;111(7):1462-1480. doi: 10.1016/j.ajhg.2024.05.015. Epub 2024 Jun 11.

Abstract

Understanding the contribution of gene-environment interactions (GxE) to complex trait variation can provide insights into disease mechanisms, explain sources of heritability, and improve genetic risk prediction. While large biobanks with genetic and deep phenotypic data hold promise for obtaining novel insights into GxE, our understanding of GxE architecture in complex traits remains limited. We introduce a method to estimate the proportion of trait variance explained by GxE (GxE heritability) and additive genetic effects (additive heritability) across the genome and within specific genomic annotations. We show that our method is accurate in simulations and computationally efficient for biobank-scale datasets. We applied our method to common array SNPs (MAF ≥1%), fifty quantitative traits, and four environmental variables (smoking, sex, age, and statin usage) in unrelated white British individuals in the UK Biobank. We found 68 trait-E pairs with significant genome-wide GxE heritability (p<0.05/200) with a ratio of GxE to additive heritability of ≈6.8% on average. Analyzing ≈8 million imputed SNPs (MAF ≥0.1%), we documented an approximate 28% increase in genome-wide GxE heritability compared to array SNPs. We partitioned GxE heritability across minor allele frequency (MAF) and local linkage disequilibrium (LD) values, revealing that, like additive allelic effects, GxE allelic effects tend to increase with decreasing MAF and LD. Analyzing GxE heritability near genes highly expressed in specific tissues, we find significant brain-specific enrichment for body mass index (BMI) and basal metabolic rate in the context of smoking and adipose-specific enrichment for waist-hip ratio (WHR) in the context of sex.

摘要

理解基因-环境相互作用(GxE)对复杂性状变异的贡献,可以深入了解疾病机制,解释遗传率的来源,并提高遗传风险预测能力。虽然拥有遗传和深度表型数据的大型生物库有望为深入了解 GxE 提供新的见解,但我们对复杂性状中 GxE 结构的理解仍然有限。我们介绍了一种方法,可以估计基因组范围内和特定基因组注释内 GxE(GxE 遗传率)和加性遗传效应(加性遗传率)解释的性状变异比例。我们表明,我们的方法在模拟中是准确的,并且对于生物库规模的数据集具有计算效率。我们将我们的方法应用于 UK Biobank 中无关的白种英国个体中的常见数组 SNP(MAF≥1%)、五十种数量性状和四个环境变量(吸烟、性别、年龄和他汀类药物使用)。我们发现了 68 个具有显著全基因组 GxE 遗传率的性状-环境对(p<0.05/200),平均 GxE 与加性遗传率的比值约为 6.8%。分析了大约 800 万个已推断的 SNP(MAF≥0.1%),与数组 SNP 相比,全基因组 GxE 遗传率增加了约 28%。我们根据次要等位基因频率(MAF)和局部连锁不平衡(LD)值对 GxE 遗传率进行了划分,结果表明,与加性等位基因效应类似,GxE 等位基因效应往往随着 MAF 和 LD 的降低而增加。分析在特定组织中高度表达的基因附近的 GxE 遗传率,我们发现了在吸烟背景下 BMI 和基础代谢率在大脑中的显著富集,以及在性别背景下腰臀比(WHR)在脂肪组织中的显著富集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/627f/11267529/a3c66e48f5d9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索