Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
European Cancer Stem Cell Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
Oncogene. 2018 Nov;37(45):5913-5925. doi: 10.1038/s41388-018-0381-2. Epub 2018 Jul 6.
Cancer cells lose homeostatic flexibility because of mutations and dysregulated signaling pathways involved in maintaining homeostasis. Tuberous Sclerosis Complex 1 (TSC1) and TSC2 play a fundamental role in cell homeostasis, where signal transduction through TSC1/TSC2 is often compromised in cancer, leading to aberrant activation of mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 hyperactivation increases the basal level of endoplasmic reticulum (ER) stress via an accumulation of unfolded protein, due to heightened de novo protein translation and repression of autophagy. We exploit this intrinsic vulnerability of tumor cells lacking TSC2, by treating with nelvinavir to further enhance ER stress while inhibiting the proteasome with bortezomib to prevent effective protein removal. We show that TSC2-deficient cells are highly dependent on the proteosomal degradation pathway for survival. Combined treatment with nelfinavir and bortezomib at clinically relevant drug concentrations show synergy in selectively killing TSC2-deficient cells with limited toxicity in control cells. This drug combination inhibited tumor formation in xenograft mouse models and patient-derived cell models of TSC and caused tumor spheroid death in 3D culture. Importantly, 3D culture assays differentiated between the cytostatic effects of the mTORC1 inhibitor, rapamycin, and the cytotoxic effects of the nelfinavir/bortezomib combination. Through RNA sequencing, we determined that nelfinavir and bortezomib tip the balance of ER protein homeostasis of the already ER-stressed TSC2-deficient cells in favor of cell death. These findings have clinical relevance in stratified medicine to treat tumors that have compromised signaling through TSC and are inflexible in their capacity to restore ER homeostasis.
癌细胞由于涉及维持体内平衡的突变和失调信号通路而失去体内平衡的灵活性。结节性硬化复合物 1 (TSC1) 和 TSC2 在细胞体内平衡中发挥着基本作用,而 TSC1/TSC2 中的信号转导在癌症中经常受到损害,导致机械靶标雷帕霉素复合物 1 (mTORC1) 的异常激活。mTORC1 的过度激活会导致未折叠蛋白的积累,从而增加内质网 (ER) 应激的基础水平,这是由于新生蛋白翻译增加和自噬受到抑制。我们利用 TSC2 缺失的肿瘤细胞的这种内在脆弱性,用奈韦拉平治疗来进一步增强 ER 应激,同时用硼替佐米抑制蛋白酶体以防止有效蛋白去除。我们表明,TSC2 缺失的细胞对蛋白酶体降解途径的依赖性很高。用奈韦拉平和硼替佐米联合治疗,以临床相关的药物浓度显示出协同作用,选择性地杀死 TSC2 缺失的细胞,而对对照细胞的毒性有限。这种药物联合抑制异种移植小鼠模型和 TSC 患者来源细胞模型中的肿瘤形成,并导致 3D 培养中的肿瘤球体死亡。重要的是,3D 培养测定区分了 mTORC1 抑制剂雷帕霉素的细胞停滞作用和奈韦拉平/硼替佐米联合的细胞毒性作用。通过 RNA 测序,我们确定奈韦拉平和硼替佐米使已经 ER 应激的 TSC2 缺失细胞的 ER 蛋白体内平衡失衡,有利于细胞死亡。这些发现对分层医学具有临床意义,可以治疗信号转导受损且恢复 ER 体内平衡能力受损的肿瘤。