Suppr超能文献

纳米粒子条纹传感器,用于高灵敏度和选择性检测汞离子。

Nanoparticle stripe sensor for highly sensitive and selective detection of mercury ions.

机构信息

Institute of Complex Systems, Bioelectronics (ICS-8) and JARA - Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany.

Institute of Complex Systems, Bioelectronics (ICS-8) and JARA - Fundamentals of Future Information Technology, Forschungszentrum Jülich, 52425 Jülich, Germany; Materials Genome Institute, Shanghai University, Shanghai, China.

出版信息

Biosens Bioelectron. 2018 Oct 15;117:450-456. doi: 10.1016/j.bios.2018.06.029. Epub 2018 Jun 19.

Abstract

Mercury and its compounds are emitted during industrial processes and are extremely harmful for eco systems and human health. Therefore, the detection of mercury ions (Hg) in our living and working environment is of great importance for the society and especially for the health of human beings. Here we demonstrate a proof of concept nanoparticle stripe sensor for highly sensitive and selective detection of Hg. This sensor is based on the changes of the charge transport between the neighboring nanoparticles in the nanoparticle stripe. The addition of Hg induces a chelation between Hg and carboxylic groups on the surface modification molecules and thus facilitates the charge transport, causing an increase of conductivity in the nanoparticle stripe. These nanoparticle stripes with a few layers in height and several micrometers in width possess large surface area, which increases their exposure to ions and improves the ability to detect Hg at low concentrations. Besides, we studied the effect of molecular length on the sensitivity of the sensor. It is shown that the length of surface modification molecules is positively correlated with the sensitivity of the sensor. The fabricated devices exhibit a detection limit as low as 0.1 nM and a specific response towards Hg ions.

摘要

汞及其化合物在工业过程中被排放出来,对生态系统和人类健康极其有害。因此,在我们的生活和工作环境中检测汞离子(Hg)对社会,特别是对人类健康具有重要意义。在这里,我们展示了一种基于纳米颗粒条带的概念验证传感器,用于对 Hg 进行高灵敏度和选择性检测。该传感器基于纳米颗粒条带中相邻纳米颗粒之间电荷传输的变化。Hg 的加入会导致 Hg 与表面修饰分子上的羧酸基团之间发生螯合,从而促进电荷传输,导致纳米颗粒条带的电导率增加。这些具有少数层高度和几微米宽度的纳米颗粒条带具有较大的表面积,增加了它们与离子的接触,并提高了在低浓度下检测 Hg 的能力。此外,我们研究了分子长度对传感器灵敏度的影响。结果表明,表面修饰分子的长度与传感器的灵敏度呈正相关。所制备的器件的检测限低至 0.1 nM,对 Hg 离子具有特异性响应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验