IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
Neuroimage Clin. 2018 May 9;19:443-453. doi: 10.1016/j.nicl.2018.05.008. eCollection 2018.
In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical diagnosis based on fixed impairment levels, as opposed to predicting impairment in time windows comparable to the duration of a clinical trial. Here we evaluate an approach to both detect atrophy patterns associated with early degeneration and provide a prognosis of motor impairment within 3 years, using data from the TRACK-HD study on 80 premanifest HD (pre-HD) individuals and 85 age- and sex-matched healthy controls. We integrate anatomical MRI information from gray matter concentrations (estimated via voxel-based morphometry) together with baseline data from demographic, genetic and motor domains to distinguish individuals at high risk of developing pronounced future motor impairment from those at low risk. We evaluate the ability of models to distinguish between these two groups solely using baseline imaging data, as well as in combination with longitudinal imaging or non-imaging data. Our models show improved performance for motor prognosis through the incorporation of imaging features to non-imaging data, reaching 88% cross-validated accuracy when using baseline non-longitudinal information, and detect informative correlates in the caudate nucleus and the thalamus both for motor prognosis and early atrophy detection. These results show the plausibility of using baseline imaging and basic demographic/genetic measures for early detection of individuals at high risk of severe future motor impairment in relatively short timeframes.
在亨廷顿病 (HD) 中,准确估计预期的未来运动障碍对于临床试验至关重要。个体预后仅部分由遗传决定。然而,迄今为止的研究主要集中在基于固定障碍水平预测临床诊断时间,而不是在与临床试验持续时间相当的时间窗口内预测障碍时间。在这里,我们使用 TRACK-HD 研究中 80 名前显型 HD(pre-HD)个体和 85 名年龄和性别匹配的健康对照者的数据,评估了一种既能检测与早期退化相关的萎缩模式,又能在 3 年内提供运动障碍预后的方法。我们整合了来自灰质浓度的解剖 MRI 信息(通过体素形态计量法估计)以及来自人口统计学、遗传学和运动学领域的基线数据,以区分有高风险出现明显未来运动障碍的个体和低风险的个体。我们评估了仅使用基线成像数据以及结合纵向成像或非成像数据区分这两组个体的模型能力。我们的模型通过将成像特征纳入非成像数据,提高了运动预后的准确性,当使用基线非纵向信息时,交叉验证准确率达到 88%,并且在尾状核和丘脑都检测到了与运动预后和早期萎缩检测相关的信息。这些结果表明,使用基线成像和基本的人口统计学/遗传学指标在相对较短的时间内早期检测出高风险的个体有严重未来运动障碍的可能性是合理的。