Faculty of Agriculture and Natural Science, Düzce University, 81620, Düzce, Turkey.
Physiol Plant. 2019 Feb;165(2):169-182. doi: 10.1111/ppl.12798. Epub 2018 Sep 10.
Greater crop losses can result from simultaneous exposure to a combination of drought, heat and salinity in the field. Salicylic acid (SA), a phenolic phytohormone, can affect a range of physiological and biochemical processes in plants and significantly impacts their resistance to these abiotic stresses. Despite numerous reports involving the positive effects of SA by applying each abiotic stress separately, the mechanism of SA-mediated adaptation to combined stresses remains elusive. This study, via a time-course analysis, investigated the role of SA on the roots of hulled and hulless (naked) barley (Hordeum vulgare L. 'Tarm' and 'Özen', respectively), which differed in salt tolerance, under the combined stress of drought, heat and salt. The combined stress caused marked reductions in root length and increases in proline content in both genotypes; however, Tarm exhibited better adaptation to the triple stress. Under the first 24 h of stress, superoxide dismutase (SOD; EC.1.15.1.1) and peroxidase (POX; EC.1.11.1.7) activity in the Tarm roots increased remarkably, while decreasing in the Özen roots. Furthermore, the Tarm roots showed higher catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11) and glutathione reductase (GR; EC 1.6.4.2) activity than the Özen during the combined stresses. The sensitivity of hulless barley roots may be related to decreasing SOD, POX, CAT and GR activity under stress. Over 72 h of stress, the SA pretreatment improved the APX and GR activity in Tarm and that of POX and CAT in Özen, demonstrating that exogenously applied SA regulates antioxidant defense enzymes in order to detoxify reactive oxygen species. The results of this study suggest that SA treatment may improve the triple-stress combination tolerance in hulled and hulless barley cultivars by increasing the level of antioxidant enzyme activity and promoting the accumulation of proline. Thus, SA alleviated the damaging effects of the triple stress by improving the antioxidant system, although these effects differed depending on characteristic of the hull of the grain.
田间同时遭受干旱、高温和盐胁迫会导致更大的作物损失。水杨酸(SA)作为一种酚类植物激素,能够影响植物的一系列生理生化过程,显著增强其对非生物胁迫的抗性。尽管有许多关于单独施加每种非生物胁迫时 SA 具有积极影响的报道,但 SA 介导的复合胁迫适应机制仍不清楚。本研究通过时间进程分析,研究了在干旱、高温和盐复合胁迫下,具有不同耐盐性的皮大麦( hulled barley) hulless 大麦( hulless barley) hulless (裸大麦) hulless (裸大麦)的根系中, SA 对其的作用。复合胁迫导致两种基因型的根长显著减少,脯氨酸含量增加;然而, Tarm 对三重胁迫的适应性更好。在胁迫的前 24 小时内, Tarm 根中超氧化物歧化酶( SOD ; EC.1.15.1.1 )和过氧化物酶( POX ; EC.1.11.1.7 )活性显著增加,而 Özen 根中的活性则降低。此外,在复合胁迫下, Tarm 根中的过氧化氢酶( CAT ; EC 1.11.1.6 )、抗坏血酸过氧化物酶( APX ; EC 1.11.1.11 )和谷胱甘肽还原酶( GR ; EC 1.6.4.2 )活性均高于 Özen 。裸大麦根的敏感性可能与胁迫下 SOD 、 POX 、 CAT 和 GR 活性降低有关。在胁迫 72 小时以上时, SA 预处理提高了 Tarm 的 APX 和 GR 活性,提高了 Özen 的 POX 和 CAT 活性,表明外源 SA 调节抗氧化防御酶以解毒活性氧。本研究结果表明, SA 处理可通过提高抗氧化酶活性和促进脯氨酸积累,提高皮大麦和裸大麦品种对三重胁迫组合的耐受性。因此, SA 通过改善抗氧化系统缓解了三重胁迫的破坏作用,尽管这些作用因谷物皮的特性而异。