Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, United States.
Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States; Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, TX 77005, United States.
J Mol Biol. 2022 Sep 30;434(18):167788. doi: 10.1016/j.jmb.2022.167788. Epub 2022 Aug 11.
Messenger RNA regulatory elements, such as riboswitches, can display a high degree of flexibility. By characterizing their energy landscapes, and corresponding distributions of 3D configurations, structure-function relationships can be elucidated. Molecular dynamics simulation with enhanced sampling is an important strategy used to computationally access free energy landscapes characterizing the accessible 3D conformations of RNAs. While tertiary contacts are thought to play important roles in RNA dynamics, it is difficult, in explicit solvent, to sample the formation and breakage of tertiary contacts, such as helix-helix interactions, pseudoknot interactions, and junction interactions, while maintaining intact secondary structure elements. To this end, we extend previously developed collective variables and metadynamics efforts, to establish a simple metadynamics protocol, which utilizes only one collective variable, based on multiple tertiary contacts, to characterize the underlying free energy landscape of any RNA molecule. We develop a modified collective variable, the tertiary contacts distance (Q), which can probe the formation and breakage of all or selectively chosen tertiary contacts of the RNA. The SAM-I riboswitch in the presence of three ionic and substrate conditions was investigated and validated against the structure ensemble previously generated using SAXS experiments. This efficient and easy to implement all-atom MD simulation based approach incorporating metadynamics to study RNA conformational dynamics can also be transferred to any other type of biomolecule.
信使 RNA 调节元件,如核酶,可表现出高度的灵活性。通过对其能量景观和相应的 3D 构象分布进行特征描述,可以阐明结构-功能关系。使用增强采样的分子动力学模拟是一种重要的策略,用于计算访问 RNA 可及 3D 构象的特征自由能景观。虽然三级接触被认为在 RNA 动力学中起着重要作用,但在明溶剂中,很难在保持完整二级结构元件的情况下,对三级接触(如螺旋-螺旋相互作用、假结相互作用和连接点相互作用)的形成和断裂进行采样。为此,我们扩展了先前开发的集体变量和元动力学研究,建立了一个简单的元动力学方案,该方案仅使用一个基于多个三级接触的集体变量,来描述任何 RNA 分子的潜在自由能景观。我们开发了一种改良的集体变量,即三级接触距离(Q),它可以探测 RNA 中所有或选择性选择的三级接触的形成和断裂。研究了 SAM-I 核酶在三种离子和底物条件下的情况,并与之前使用 SAXS 实验生成的结构集合进行了验证。这种基于高效且易于实现的全原子 MD 模拟的方法,结合元动力学来研究 RNA 构象动力学,也可以转移到任何其他类型的生物分子。