Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
Mol Psychiatry. 2020 Aug;25(8):1835-1848. doi: 10.1038/s41380-018-0113-6. Epub 2018 Jul 9.
Mutation in the SHANK3 human gene leads to different neuropsychiatric diseases including Autism Spectrum Disorder (ASD), intellectual disabilities and Phelan-McDermid syndrome. Shank3 disruption in mice leads to dysfunction of synaptic transmission, behavior, and development. Protein S-nitrosylation, the nitric oxide (NO)-mediated posttranslational modification (PTM) of cysteine thiols (SNO), modulates the activity of proteins that regulate key signaling pathways. We tested the hypothesis that Shank3 mutation would generate downstream effects on PTM of critical proteins that lead to modification of synaptic functions. SNO-proteins in two ASD-related brain regions, cortex and striatum of young and adult InsG3680(+/+) mice (a human mutation-based Shank3 mouse model), were identified by an innovative mass spectrometric method, SNOTRAP. We found changes of the SNO-proteome in the mutant compared to WT in both ages. Pathway analysis showed enrichment of processes affected in ASD. SNO-Calcineurin in mutant led to a significant increase of phosphorylated Synapsin1 and CREB, which affect synaptic vesicle mobilization and gene transcription, respectively. A significant increase of 3-nitrotyrosine was found in the cortical regions of the adult mutant, signaling both oxidative and nitrosative stress. Neuronal NO Synthase (nNOS) was examined for levels and localization in neurons and no significant difference was found in WT vs. mutant. S-nitrosoglutathione concentrations were higher in mutant mice compared to WT. This is the first study on NO-related molecular changes and SNO-signaling in the brain of an ASD mouse model that allows the characterization and identification of key proteins, cellular pathways, and neurobiological mechanisms that might be affected in ASD.
人类 SHANK3 基因突变可导致多种神经精神疾病,包括自闭症谱系障碍(ASD)、智力障碍和 Phelan-McDermid 综合征。Shank3 在小鼠中的缺失会导致突触传递、行为和发育功能障碍。蛋白质 S-亚硝基化,即一氧化氮(NO)介导的半胱氨酸硫醇(SNO)的翻译后修饰(PTM),调节调节关键信号通路的蛋白质的活性。我们检验了这样一个假设,即 Shank3 突变会对关键蛋白质的 PTM 产生下游影响,从而导致突触功能的改变。通过一种创新的质谱方法 SNOTRAP,鉴定了两种与 ASD 相关的大脑区域(年轻和成年 InsG3680(+/+)小鼠的皮层和纹状体)中的 SNO-蛋白质,InsG3680(+/+) 小鼠(一种基于人类 Shank3 突变的小鼠模型)。我们发现,与 WT 相比,突变体在两个年龄段的 SNO 蛋白质组中都发生了变化。通路分析显示,ASD 中受影响的过程丰富。突变体中的 SNO-Calcineurin 导致磷酸化 Synapsin1 和 CREB 的显著增加,分别影响突触小泡的动员和基因转录。在成年突变体的皮质区域发现 3-硝基酪氨酸的显著增加,表明存在氧化和硝化应激。检查神经元中的神经元型一氧化氮合酶(nNOS)水平和定位,在 WT 与突变体之间未发现显著差异。与 WT 相比,突变体小鼠中的 S-亚硝基谷胱甘肽浓度更高。这是首次在 ASD 小鼠模型的大脑中进行关于 NO 相关分子变化和 SNO 信号的研究,使我们能够对可能在 ASD 中受到影响的关键蛋白质、细胞通路和神经生物学机制进行表征和鉴定。