State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
Nanoscale. 2018 Jul 19;10(28):13329-13334. doi: 10.1039/c8nr03573c.
Metastability engineering opens a new avenue to design high-entropy alloys (HEAs) originally proposed to benefit from phase stabilization. Meanwhile, boundary engineering via embedding planar defects such as stacking faults and nanotwins into the matrix of metals provides them with unique mechanical properties. In this work, for the first time, we combine the above two strategies to prepare Al0.1CoCrFeNi HEA pillars populated with a high density of stacking faults and nanotwins. It is uncovered that the stacking faulted (SF) Al0.1CoCrFeNi HEA pillars manifest ultrahigh strength exceeding 4.0 GPa and considerable compressive plasticity over 15%, much superior to their nanotwinned (NT) counterparts. Compared with the nanotwins undergoing detwinning during plastic deformation, the stacking faults in Al0.1CoCrFeNi high-entropy alloy thin films (HEAFs) are quite stable to hinder dislocation motion. Our findings not only endow the Al0.1CoCrFeNi HEAs with a predominant combination of strength and compression deformability, but also shed light on a new perspective for overcoming the strength and ductility trade-off in structural materials.
亚稳工程为设计高熵合金(HEAs)开辟了新途径,最初提出这一方法是为了受益于相稳定。同时,通过在金属基体中嵌入层错和纳米孪晶等面型缺陷来进行晶界工程,为它们提供了独特的力学性能。在这项工作中,我们首次将上述两种策略结合起来,制备了 Al0.1CoCrFeNi HEA 立柱,其中含有高密度的层错和纳米孪晶。研究结果表明,具有层错(SF)的 Al0.1CoCrFeNi HEA 立柱表现出超过 4.0 GPa 的超高强度和超过 15%的可观压缩塑性,明显优于其具有纳米孪晶(NT)的对应物。与在塑性变形过程中发生去孪晶的孪晶相比,Al0.1CoCrFeNi 高熵合金薄膜(HEAFs)中的层错非常稳定,阻碍位错运动。我们的研究结果不仅赋予了 Al0.1CoCrFeNi HEAs 优越的强度和压缩变形能力的结合,而且为克服结构材料的强度和延展性之间的权衡提供了新的视角。