Suppr超能文献

用于解决目标遮挡问题的事件驱动立体视觉跟踪算法

Event-Driven Stereo Visual Tracking Algorithm to Solve Object Occlusion.

作者信息

Camunas-Mesa Luis A, Serrano-Gotarredona Teresa, Ieng Sio-Hoi, Benosman Ryad, Linares-Barranco Bernabe

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4223-4237. doi: 10.1109/TNNLS.2017.2759326. Epub 2017 Oct 27.

Abstract

Object tracking is a major problem for many computer vision applications, but it continues to be computationally expensive. The use of bio-inspired neuromorphic event-driven dynamic vision sensors (DVSs) has heralded new methods for vision processing, exploiting reduced amount of data and very precise timing resolutions. Previous studies have shown these neural spiking sensors to be well suited to implementing single-sensor object tracking systems, although they experience difficulties when solving ambiguities caused by object occlusion. DVSs have also performed well in 3-D reconstruction in which event matching techniques are applied in stereo setups. In this paper, we propose a new event-driven stereo object tracking algorithm that simultaneously integrates 3-D reconstruction and cluster tracking, introducing feedback information in both tasks to improve their respective performances. This algorithm, inspired by human vision, identifies objects and learns their position and size in order to solve ambiguities. This strategy has been validated in four different experiments where the 3-D positions of two objects were tracked in a stereo setup even when occlusion occurred. The objects studied in the experiments were: 1) two swinging pens, the distance between which during movement was measured with an error of less than 0.5%; 2) a pen and a box, to confirm the correctness of the results obtained with a more complex object; 3) two straws attached to a fan and rotating at 6 revolutions per second, to demonstrate the high-speed capabilities of this approach; and 4) two people walking in a real-world environment.

摘要

目标跟踪是许多计算机视觉应用中的一个主要问题,但它在计算上仍然代价高昂。受生物启发的神经形态事件驱动动态视觉传感器(DVS)的使用开创了视觉处理的新方法,利用了减少的数据量和非常精确的时间分辨率。先前的研究表明,这些神经脉冲传感器非常适合实现单传感器目标跟踪系统,尽管在解决由目标遮挡引起的模糊性时会遇到困难。DVS在三维重建中也表现出色,其中事件匹配技术应用于立体设置中。在本文中,我们提出了一种新的事件驱动立体目标跟踪算法,该算法同时集成了三维重建和聚类跟踪,在这两个任务中引入反馈信息以提高它们各自的性能。这种受人类视觉启发的算法识别目标并学习它们的位置和大小以解决模糊性。该策略已在四个不同的实验中得到验证,在立体设置中跟踪两个物体的三维位置,即使发生遮挡时也是如此。实验中研究的物体有:1)两支摆动的笔,在运动过程中它们之间的距离测量误差小于0.5%;2)一支笔和一个盒子,以用更复杂的物体确认所获得结果的正确性;3)两根连接到风扇上并以每秒6转旋转的吸管,以证明这种方法的高速能力;4)两个在现实环境中行走的人。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验