Steffen Lea, Reichard Daniel, Weinland Jakob, Kaiser Jacques, Roennau Arne, Dillmann Rüdiger
FZI Research Center for Information Technology, Karlsruhe, Germany.
Humanoids and Intelligence Systems Lab, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Front Neurorobot. 2019 May 28;13:28. doi: 10.3389/fnbot.2019.00028. eCollection 2019.
Any visual sensor, whether artificial or biological, maps the 3D-world on a 2D-representation. The missing dimension is depth and most species use stereo vision to recover it. Stereo vision implies multiple perspectives and matching, hence it obtains depth from a pair of images. Algorithms for stereo vision are also used prosperously in robotics. Although, biological systems seem to compute disparities effortless, artificial methods suffer from high energy demands and latency. The crucial part is the correspondence problem; finding the matching points of two images. The development of event-based cameras, inspired by the retina, enables the exploitation of an additional physical constraint-time. Due to their asynchronous course of operation, considering the precise occurrence of spikes, Spiking Neural Networks take advantage of this constraint. In this work, we investigate sensors and algorithms for event-based stereo vision leading to more biologically plausible robots. Hereby, we focus mainly on binocular stereo vision.
任何视觉传感器,无论是人工的还是生物的,都会将三维世界映射到二维表示上。缺失的维度是深度,大多数物种利用立体视觉来恢复它。立体视觉意味着多个视角和匹配,因此它从一对图像中获取深度。立体视觉算法在机器人技术中也得到了广泛应用。尽管生物系统似乎能轻松计算视差,但人工方法却存在高能量需求和延迟问题。关键部分是对应问题,即找到两幅图像的匹配点。受视网膜启发的基于事件的相机的发展,使得能够利用额外的物理约束——时间。由于其异步操作过程,考虑到尖峰的精确发生,脉冲神经网络利用了这一约束。在这项工作中,我们研究基于事件的立体视觉的传感器和算法,以实现更具生物合理性的机器人。在此,我们主要关注双目立体视觉。