Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
Université Pierre et Marie Curie, Institut de la Vision, Paris, France.
Sci Rep. 2017 Jan 12;7:40703. doi: 10.1038/srep40703.
Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.
立体视觉是机器视觉系统能够感知其 3D 环境的一个重要特征。虽然机器视觉已经产生了各种软件算法来解决立体对应问题,但在小型、快速和高效的硬件视觉系统中实现和集成这些算法仍然是一个具有挑战性的问题。神经形态工程的最新进展为解决这个问题提供了一个可能的解决方案,使用了一类新的基于事件的视觉传感器和受大脑组织原则启发的神经处理设备。在这里,我们提出了一个激进的新模型,该模型使用可以直接用大规模并行、紧凑、低延迟和低功耗的神经形态工程设备实现的尖峰神经网络来解决立体对应问题。我们用实验结果验证了该模型,突出了与计算神经科学立体视觉理论和实验发现一致的特征。我们用一个神经形态硬件系统原型演示了它的特征,并对基于尖峰的表示和时间动态在生物立体视觉处理系统中的作用进行了可测试的预测。