Gu Bin, Sheng Victor S
IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4462-4472. doi: 10.1109/TNNLS.2017.2771456. Epub 2017 Nov 29.
Parameter in learning problems (usually arising from the tradeoff between training error minimization and regularization) is often tuned by cross validation (CV). A solution path provides a compact representation of all optimal solutions, which can be used to determine the parameter with the global minimum CV error, without solving original optimization problems multiple times based on grid search. However, existing solution path algorithms do not provide a unified implementation to various learning problems. In this paper, we first introduce a general parametric quadratic programming (PQP) problem that can be instantiated to an extensive number of learning problems. Then, we propose a generalized solution path (GSP) for the general PQP problem. Particularly, we use the $QR$ decomposition to handle singularities in GSP. Finally, we analyze the finite convergence and the time complexity of GSP. Our experimental results on a variety of data sets not only confirm the identicality between GSP and several existing solution path algorithms but also show the superiority of our GSP over the existing solution path algorithms on both generalization and robustness. Finally, we provide a practical guild of using the GSP to solve two important learning problems, i.e., generalized error path and Ivanov SVM.
学习问题中的参数(通常源于训练误差最小化与正则化之间的权衡)常常通过交叉验证(CV)来调整。一条解路径提供了所有最优解的紧凑表示,可用于确定具有全局最小CV误差的参数,而无需基于网格搜索多次求解原始优化问题。然而,现有的解路径算法并未为各种学习问题提供统一的实现。在本文中,我们首先引入一个通用的参数二次规划(PQP)问题,它可以实例化为大量的学习问题。然后,我们为通用的PQP问题提出了一种广义解路径(GSP)。特别地,我们使用QR分解来处理GSP中的奇异性。最后,我们分析了GSP的有限收敛性和时间复杂度。我们在各种数据集上的实验结果不仅证实了GSP与几种现有解路径算法的一致性,还表明了我们的GSP在泛化性和鲁棒性方面优于现有解路径算法。最后,我们提供了一个使用GSP解决两个重要学习问题的实用指南,即广义误差路径和伊万诺夫支持向量机。