IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1103-1121. doi: 10.1109/TPAMI.2016.2578326. Epub 2016 Jun 8.
Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.
模型选择在代价敏感支持向量机(CS-SVM)中起着重要作用。已经证明,基于单参数学习问题的解路径,可以有效地计算全局最小交叉验证(CV)误差。然而,基于一维解路径和传统网格搜索来获得 CS-SVM 的全局最小 CV 误差是一项挑战,因为 CS-SVM 具有两个正则化参数。在本文中,我们提出了一种基于解和误差曲面的 CV 方法(CV-SES)。具体来说,我们首先使用双参数空间分区算法为 CS-SVM 计算二维解曲面,该曲面可以拟合所有正则化参数值的 CS-SVM 的解。然后,我们为每个 CV 折计算二维验证误差曲面,该曲面可以拟合所有正则化参数值的 CS-SVM 的验证误差。最后,我们通过叠加 K 个验证误差曲面来获得 CV 误差曲面,从而找到 CS-SVM 的全局最小 CV 误差。我们在七个用于代价敏感学习的数据集和四个用于不平衡学习的数据集上进行了实验。实验结果不仅表明,与各种网格搜索和解路径方法相结合的 CS-SVM 以及最近提出的具有三维网格搜索的代价敏感铰链损失 SVM 相比,我们提出的 CV-SES 具有更好的泛化能力,而且还表明 CV-SES 运行时间更短。