Suppr超能文献

基于分解的多目标人工蜂群算法。

A Decomposition-Based Many-Objective Artificial Bee Colony Algorithm.

出版信息

IEEE Trans Cybern. 2019 Jan;49(1):287-300. doi: 10.1109/TCYB.2017.2772250. Epub 2017 Nov 28.

Abstract

In this paper, a decomposition-based artificial bee colony (ABC) algorithm is proposed to handle many-objective optimization problems (MaOPs). In the proposed algorithm, an MaOP is converted into a number of subproblems which are simultaneously optimized by a modified ABC algorithm. The hybrid of the decomposition-based algorithm and the ABC algorithm can make full use of the advantages of both algorithms. The former, with the help of a set of weight vectors, is able to maintain a good diversity among solutions, while the latter, with a fast convergence speed, is highly effective when solving a scalar optimization problem. Therefore, the convergence and diversity would be well balanced in the new algorithm. Moreover, subproblems in the proposed algorithm are handled unequally, and computational resources are dynamically allocated through specially designed onlooker bees and scout bees. The proposed algorithm is compared with five state-of-the-art many-objective evolutionary algorithms on 13 test problems with up to 50 objectives. It is shown by the experimental results that the proposed algorithm performs better than or comparably to other algorithms in terms of both quality of the final solution set and efficiency of the algorithms. Finally, as shown by the Wilcoxon signed-rank test results, the onlooker bees and scout bees indeed contribute to performance improvements of the algorithm. Given the high quality of solutions and the rapid running speed, the proposed algorithm could be a promising tool when approximating a set of well-converged and properly distributed nondominated solutions for MaOPs.

摘要

本文提出了一种基于分解的人工蜂群算法(ABC 算法)来处理多目标优化问题(MaOPs)。在提出的算法中,一个 MaOP 被转化为多个子问题,这些子问题由改进的 ABC 算法同时进行优化。分解算法和 ABC 算法的混合可以充分利用两种算法的优势。前者通过一组权重向量来保持解之间的良好多样性,而后者具有快速收敛速度,在解决标量优化问题时非常有效。因此,新算法可以很好地平衡收敛性和多样性。此外,提出的算法中的子问题是不平等处理的,并且通过专门设计的观察蜂和侦察蜂动态分配计算资源。在 13 个多达 50 个目标的测试问题上,将所提出的算法与 5 种最先进的多目标进化算法进行了比较。实验结果表明,在所提出的算法在最终解集的质量和算法的效率方面都优于或可比于其他算法。最后,根据 Wilcoxon 符号秩检验结果,观察蜂和侦察蜂确实有助于提高算法的性能。鉴于解决方案的高质量和快速运行速度,所提出的算法可能是一种很有前途的工具,可用于逼近一组收敛良好且分布适当的 MaOP 非支配解集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验