Hu Bin, Guan Zhi-Hong, Qian Tong-Hui, Chen Guanrong
IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4370-4384. doi: 10.1109/TNNLS.2017.2764003. Epub 2017 Nov 9.
Neural networks (NNs) have emerged as a powerful illustrative diagram for the brain. Unveiling the mechanism of neural-dynamic evolution is one of the crucial steps toward understanding how the brain works and evolves. Inspired by the universal existence of impulses in many real systems, this paper formulates a type of hybrid NNs (HNNs) with impulses, time delays, and interval uncertainties, and studies its global dynamic evolution by a robust interval analysis. The HNNs incorporate both continuous-time implementation and impulsive jump in mutual activations, where time delays and interval uncertainties are represented simultaneously. By constructing a Banach contraction mapping, the existence and uniqueness of the equilibrium of the HNN model are proved and analyzed in detail. Based on nonsmooth Lyapunov functions and delayed impulsive differential equations, new criteria are derived for ensuring the global robust exponential stability of the HNNs. Convergence analysis together with illustrative examples show the effectiveness of the theoretical results.
神经网络(NNs)已成为一种强大的大脑示意图。揭示神经动力学演化机制是理解大脑如何工作和演化的关键步骤之一。受许多实际系统中脉冲普遍存在的启发,本文构建了一种具有脉冲、时滞和区间不确定性的混合神经网络(HNNs),并通过鲁棒区间分析研究其全局动态演化。HNNs在相互激活中同时包含连续时间实现和脉冲跳跃,其中时滞和区间不确定性同时表示。通过构造一个巴拿赫压缩映射,详细证明并分析了HNN模型平衡点的存在性和唯一性。基于非光滑李雅普诺夫函数和时滞脉冲微分方程,导出了确保HNNs全局鲁棒指数稳定性的新准则。收敛性分析和示例表明了理论结果的有效性。