Suppr超能文献

最小路径流分解问题的理论与启发式方法。

Theory and A Heuristic for the Minimum Path Flow Decomposition Problem.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Mar-Apr;16(2):658-670. doi: 10.1109/TCBB.2017.2779509. Epub 2017 Dec 4.

Abstract

Motivated by multiple genome assembly problems and other applications, we study the following minimum path flow decomposition problem: Given a directed acyclic graph $G=(V,E)$G=(V,E) with source $s$s and sink $t$t and a flow $f$f, compute a set of $s$s-$t$t paths $P$P and assign weight $w(p)$w(p) for $p\in P$p∈P such that $f(e) = \sum _{p\in P: e\in p} w(p)$f(e)=∑p∈P:e∈pw(p), $\forall e\in E$∀e∈E, and $|P|$|P| is minimized. We develop some fundamental theory for this problem, upon which we design an efficient heuristic. Specifically, we prove that the gap between the optimal number of paths and a known upper bound is determined by the nontrivial equations within the flow values. This result gives rise to the framework of our heuristic: to iteratively reduce the gap through identifying such equations. We also define an operation on certain independent substructures of the graph, and prove that this operation does not affect the optimality but can transform the graph into one with desired property that facilitates reducing the gap. We apply and test our algorithm on both simulated random instances and perfect splice graph instances, and also compare it with the existing state-of-art algorithm for flow decomposition. The results illustrate that our algorithm can achieve very high accuracy on these instances, and also that our algorithm significantly improves on the previous algorithms. An implementation of our algorithm is freely available at https://github.com/Kingsford-Group/catfish.

摘要

受多个基因组组装问题和其他应用的启发,我们研究了以下最小路径流分解问题:给定一个有源点 $s$ 和汇点 $t$ 的有向无环图 $G=(V,E)$ 和流 $f$,计算一组 $s$-$t$ 路径 $P$ 并为 $p\in P$ 分配权重 $w(p)$,使得 $f(e) = \sum _{p\in P: e\in p} w(p)$,$\forall e\in E$,并且 $|P|$ 最小化。我们为这个问题发展了一些基本理论,并在此基础上设计了一个有效的启发式算法。具体来说,我们证明了最优路径数和已知上界之间的差距是由流值中的非平凡方程决定的。这个结果为我们的启发式算法提供了框架:通过识别这些方程来迭代地缩小差距。我们还定义了图的某些独立子结构上的一个操作,并证明这个操作不会影响最优性,但可以将图转化为具有所需性质的图,从而便于缩小差距。我们在模拟随机实例和完美拼接图实例上应用和测试了我们的算法,并将其与现有的流分解的最先进算法进行了比较。结果表明,我们的算法在这些实例上可以达到非常高的准确性,并且显著优于以前的算法。我们的算法的实现可在 https://github.com/Kingsford-Group/catfish 上免费获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验