Suppr超能文献

分段马尔可夫李雅普诺夫方法在时滞和执行器故障的模糊仿射系统可靠输出反馈控制中的应用。

A Piecewise-Markovian Lyapunov Approach to Reliable Output Feedback Control for Fuzzy-Affine Systems With Time-Delays and Actuator Faults.

出版信息

IEEE Trans Cybern. 2018 Sep;48(9):2723-2735. doi: 10.1109/TCYB.2017.2749239. Epub 2017 Dec 4.

Abstract

This paper addresses the problem of delay-dependent robust and reliable $\mathscr {H}{\infty }$ static output feedback (SOF) control for a class of uncertain discrete-time Takagi-Sugeno fuzzy-affine (FA) systems with time-varying delay and actuator faults in a singular system framework. The Markov chain is employed to describe the actuator faults behaviors. In particular, by utilizing a system augmentation approach, the conventional closed-loop system is converted into a singular FA system. By constructing a piecewise-Markovian Lyapunov-Krasovskii functional, a new $\mathscr {H}{\infty }$ performance analysis criterion is then presented, where a novel summation inequality and S-procedure are succeedingly employed. Subsequently, thanks to the special structure of the singular system formulation, the piecewise-affine SOF controller design is proposed via a convex program. Lastly, illustrative examples are given to show the efficacy and less conservatism of the presented approach.

摘要

本文针对一类具有时变时滞和执行器故障的不确定离散时间 Takagi-Sugeno 模糊仿射(FA)系统,在奇异系统框架下,研究了时滞相关鲁棒可靠 $\mathscr{H}{\infty}$ 静态输出反馈(SOF)控制问题。利用马尔可夫链来描述执行器故障行为。具体来说,通过采用系统扩充方法,将传统的闭环系统转化为奇异 FA 系统。通过构造分段 Markov 李雅普诺夫-克拉索夫斯基泛函,提出了一种新的 $\mathscr{H}{\infty}$ 性能分析准则,其中成功应用了一种新的求和不等式和 S 过程。随后,由于奇异系统形式的特殊结构,通过凸规划提出了分段仿射 SOF 控制器设计。最后,通过实例说明了所提出方法的有效性和较小的保守性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验