Suppr超能文献

利用 SPL 基因改良玉米株型以适应高密度种植。

Exploiting SPL genes to improve maize plant architecture tailored for high-density planting.

机构信息

School of Life Sciences, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China.

Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.

出版信息

J Exp Bot. 2018 Sep 14;69(20):4675-4688. doi: 10.1093/jxb/ery258.

Abstract

Maize (Zea mays ssp. mays) is an agronomically important crop and also a classical genetic model for studying the regulation of plant architecture formation, which is a critical determinant of grain yield. Since the 1930s, increasing planting density has been a major contributing factor to the >7-fold increase in maize grain yield per unit land area in the USA, which is accompanied by breeding and utilization of cultivars characterized by high-density-tolerant plant architecture, including decreased ear height, lodging resistance, more upright leaves, reduced tassel branch number, and reduced anthesis-silking interval (ASI). Recent studies demonstrated that phytochrome-mediated red/far-red light signaling pathway and the miR156/SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) regulatory module co-ordinately regulate the shade avoidance response and diverse aspects of plant architecture in responding to shading in Arabidopsis. The maize genome contains 30 ZmSPL genes, and 18 of them are predicted as direct targets of zma-miR156s. Accumulating evidence indicates that ZmSPL genes play important roles in regulating maize flowering time, plant/ear height, tilling, leaf angle, tassel and ear architecture, and grain size and shape. Finally, we discuss ways to exploit maize SPL genes and downstream targets for improving maize plant architecture tailored for high-density planting.

摘要

玉米(Zea mays ssp. mays)是一种重要的农业作物,也是研究植物结构形成调控的经典遗传模式植物,而植物结构是决定谷物产量的关键因素。自 20 世纪 30 年代以来,种植密度的增加是美国每单位土地面积玉米产量增加 7 倍以上的主要因素,这伴随着高密植耐受型植物结构品种的培育和利用,包括降低穗位高度、抗倒伏、叶片更直立、减少雄穗分枝数和缩短开花期-吐丝期(ASI)。最近的研究表明,光敏色素介导的红光/远红光信号通路和 miR156/ SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE(SPL)调控模块共同协调拟南芥对遮荫的避荫反应和植物结构的多个方面。玉米基因组包含 30 个 ZmSPL 基因,其中 18 个被预测为 zma-miR156s 的直接靶标。越来越多的证据表明,ZmSPL 基因在调节玉米开花时间、植株/穗位高度、分蘖、叶角、雄穗和穗部结构以及籽粒大小和形状方面发挥着重要作用。最后,我们讨论了利用玉米 SPL 基因和下游靶标来改善玉米植物结构以适应高密度种植的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验