Kamata Shiho Yamamoto, Kanekon Daiki, Lu Yuanyuan, Sekido Nobuaki, Maruyama Kouichi, Eggeler Gunther, Yoshimi Kyosuke
Department of Materials and Science, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
Ferroalloys Sect. 1, Ferroalloys, Non-Ferrous & Precious Metals Dept., Metals & Coal Division, Sojitz Corporation, Tokyo, 100-8691, Japan.
Sci Rep. 2018 Jul 11;8(1):10487. doi: 10.1038/s41598-018-28379-w.
In this study, the ultrahigh-temperature tensile creep behaviour of a TiC-reinforced Mo-Si-B-based alloy was investigated in the temperature range of 1400-1600 °C at constant true stress. The tests were performed in a stress range of 100-300 MPa for 400 h under vacuum, and creep rupture data were rationalized with Larson-Miller and Monkman-Grant plots. Interestingly, the MoSiBTiC alloy displayed excellent creep strength with relatively reasonable creep parameters in the ultrahigh-temperature range: a rupture time of ~400 h at 1400 °C under 137 MPa with a stress exponent (n) of 3 and an apparent activation energy of creep (Q) of 550 kJ/mol. The increasing rupture strains with decreasing stresses (up to 70%) and moderate strain-rate oscillations in the creep curves suggest that two mechanisms contribute to the creep: phase boundary sliding between the hard T and (Ti,Mo)C phases and the Mo phase, and dynamic recovery and recrystallization in Mo, observed with orientation imaging scanning electron microscopy. The results presented here represent the first full analysis of creep for the MoSiBTiC alloy in an ultrahigh-temperature range. They indicate that the high-temperature mechanical properties of this material under vacuum are promising.
在本研究中,研究了TiC增强的Mo-Si-B基合金在1400-1600 °C温度范围内、恒定真实应力下的超高温拉伸蠕变行为。试验在100-300 MPa应力范围内于真空条件下进行400 h,并通过拉森-米勒(Larson-Miller)图和蒙克曼-格兰特(Monkman-Grant)图对蠕变断裂数据进行了整理。有趣的是,MoSiBTiC合金在超高温范围内表现出优异的蠕变强度,其蠕变参数相对合理:在1400 °C、137 MPa下的断裂时间约为400 h,应力指数(n)为3,蠕变表观激活能(Q)为550 kJ/mol。随着应力降低(高达70%)断裂应变增加以及蠕变曲线中适度的应变速率振荡表明,两种机制导致了蠕变:硬T相和(Ti,Mo)C相以及Mo相之间的相界滑动,以及通过取向成像扫描电子显微镜观察到的Mo中的动态回复和再结晶。本文给出的结果代表了对MoSiBTiC合金在超高温范围内蠕变的首次全面分析。结果表明,该材料在真空下的高温力学性能很有前景。