IEEE Trans Pattern Anal Mach Intell. 2019 May;41(5):1188-1202. doi: 10.1109/TPAMI.2018.2827389. Epub 2018 Apr 16.
State-of-the-art face recognition systems are based on deep (convolutional) neural networks. Therefore, it is imperative to determine to what extent face templates derived from deep networks can be inverted to obtain the original face image. In this paper, we study the vulnerabilities of a state-of-the-art face recognition system based on template reconstruction attack. We propose a neighborly de-convolutional neural network (NbNet) to reconstruct face images from their deep templates. In our experiments, we assumed that no knowledge about the target subject and the deep network are available. To train the NbNet reconstruction models, we augmented two benchmark face datasets (VGG-Face and Multi-PIE) with a large collection of images synthesized using a face generator. The proposed reconstruction was evaluated using type-I (comparing the reconstructed images against the original face images used to generate the deep template) and type-II (comparing the reconstructed images against a different face image of the same subject) attacks. Given the images reconstructed from NbNets, we show that for verification, we achieve TAR of 95.20 percent (58.05 percent) on LFW under type-I (type-II) attacks @ FAR of 0.1 percent. Besides, 96.58 percent (92.84 percent) of the images reconstructed from templates of partition fa (fb) can be identified from partition fa in color FERET. Our study demonstrates the need to secure deep templates in face recognition systems.
基于深度学习(卷积)神经网络的最先进人脸识别系统。因此,必须确定从深度网络导出的人脸模板在多大程度上可以反转以获得原始人脸图像。在本文中,我们研究了基于模板重建攻击的最先进人脸识别系统的漏洞。我们提出了一种邻域去卷积神经网络(NbNet),从其深度模板重建人脸图像。在我们的实验中,我们假设对目标主体和深度网络没有任何了解。为了训练 NbNet 重建模型,我们使用大量使用人脸生成器合成的图像扩充了两个基准人脸数据集(VGG-Face 和 Multi-PIE)。使用类型-I(将重建图像与用于生成深度模板的原始人脸图像进行比较)和类型-II(将重建图像与同一主体的不同人脸图像进行比较)攻击来评估所提出的重建。对于从 NbNets 重建的图像,我们表明,对于验证,在 FAR 为 0.1%的情况下,我们在 LFW 上实现了 TAR 为 95.20%(58.05%)的类型-I(类型-II)攻击。此外,在 FERET 的颜色中,从分区 fa(fb)的模板重建的 96.58%(92.84%)的图像可以从分区 fa 中识别出来。我们的研究表明,人脸识别系统需要保护深度模板。