Suppr超能文献

用于域适应的聚合随机聚类促进不变投影

Aggregating Randomized Clustering-Promoting Invariant Projections for Domain Adaptation.

作者信息

Liang Jian, He Ran, Sun Zhenan, Tan Tieniu

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 May;41(5):1027-1042. doi: 10.1109/TPAMI.2018.2832198. Epub 2018 May 1.

Abstract

Unsupervised domain adaptation aims to leverage the labeled source data to learn with the unlabeled target data. Previous trandusctive methods tackle it by iteratively seeking a low-dimensional projection to extract the invariant features and obtaining the pseudo target labels via building a classifier on source data. However, they merely concentrate on minimizing the cross-domain distribution divergence, while ignoring the intra-domain structure especially for the target domain. Even after projection, possible risk factors like imbalanced data distribution may still hinder the performance of target label inference. In this paper, we propose a simple yet effective domain-invariant projection ensemble approach to tackle these two issues together. Specifically, we seek the optimal projection via a novel relaxed domain-irrelevant clustering-promoting term that jointly bridges the cross-domain semantic gap and increases the intra-class compactness in both domains. To further enhance the target label inference, we first develop a 'sampling-and-fusion' framework, under which multiple projections are independently learned based on various randomized coupled domain subsets. Subsequently, aggregating models such as majority voting are utilized to leverage multiple projections and classify unlabeled target data. Extensive experimental results on six visual benchmarks including object, face, and digit images, demonstrate that the proposed methods gain remarkable margins over state-of-the-art unsupervised domain adaptation methods.

摘要

无监督域适应旨在利用有标签的源数据来学习无标签的目标数据。以往的直推式方法通过迭代寻找低维投影来提取不变特征,并通过在源数据上构建分类器来获得伪目标标签,从而解决该问题。然而,它们仅仅专注于最小化跨域分布差异,却忽略了域内结构,尤其是目标域的域内结构。即使经过投影,诸如数据分布不均衡等潜在风险因素仍可能阻碍目标标签推断的性能。在本文中,我们提出了一种简单而有效的域不变投影集成方法,以同时解决这两个问题。具体而言,我们通过一个新颖的松弛域无关聚类促进项来寻找最优投影,该项共同弥合跨域语义差距并增强两个域内的类内紧凑性。为了进一步增强目标标签推断,我们首先开发了一个“采样与融合”框架,在该框架下基于各种随机耦合域子集独立学习多个投影。随后,利用诸如多数投票等聚合模型来利用多个投影并对无标签的目标数据进行分类。在包括物体、面部和数字图像在内的六个视觉基准上的大量实验结果表明,所提出的方法比当前最先进的无监督域适应方法有显著优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验