Dan Yufang, Li Qun, Wang Xianhua, Zhou Di
Institute of Artificial Intelligence Application, Ningbo Polytechnic, Ningbo, China.
Ningbo Key Laboratory of Aging Health Equipment and Service Technology, Ningbo, China.
Front Neurosci. 2025 Jul 23;19:1592070. doi: 10.3389/fnins.2025.1592070. eCollection 2025.
Emotion recognition based on electroencephalogram (EEG) faces substantial challenges. The variability of neural signals among different subjects and the scarcity of labeled data pose obstacles to the generalization ability of traditional domain adaptation (DA) methods. Existing approaches, especially those relying on the maximum mean discrepancy (MMD) technique, are often highly sensitive to domain mean shifts induced by noise. To overcome these limitations, a novel framework named omain daptive eep ossibilistic lustering () is proposed. This framework integrates deep domain-invariant feature learning with possibilistic clustering, reformulating Maximum Mean Discrepancy (MMD) as a one-centroid clustering task under a fuzzy entropy-regularized framework. Moreover, the DADPc incorporates adaptive weighted loss and memory bank strategies to enhance the reliability of pseudo-labels and cross-domain alignment. The proposed framework effectively mitigates noise-induced domain shifts while maintaining feature discriminability, offering a robust solution for EEG-based emotion recognition in practical applications. Extensive experiments conducted on three benchmark datasets (SEED, SEED-IV, and DEAP) demonstrate the superior performance of DADPc in emotion recognition tasks. The results show significant improvements in recognition accuracy and generalization capability across different experimental protocols, including cross-subject and cross-session scenarios. This research contributes to the field by providing a comprehensive approach that combines deep learning with possibilistic clustering, advancing the state-of-the-art in cross-domain EEG analysis.
基于脑电图(EEG)的情感识别面临着重大挑战。不同受试者之间神经信号的变异性以及标记数据的稀缺性对传统域适应(DA)方法的泛化能力构成了障碍。现有方法,尤其是那些依赖最大均值差异(MMD)技术的方法,通常对噪声引起的域均值偏移高度敏感。为了克服这些限制,提出了一种名为域自适应深度可能性聚类(DADPc)的新颖框架。该框架将深度域不变特征学习与可能性聚类相结合,在模糊熵正则化框架下将最大均值差异(MMD)重新表述为单中心聚类任务。此外,DADPc纳入了自适应加权损失和记忆库策略,以提高伪标签的可靠性和跨域对齐。所提出的框架在保持特征可区分性的同时有效地减轻了噪声引起的域偏移,为实际应用中基于EEG的情感识别提供了一种强大的解决方案。在三个基准数据集(SEED、SEED-IV和DEAP)上进行的大量实验证明了DADPc在情感识别任务中的卓越性能。结果表明,在包括跨受试者和跨会话场景在内的不同实验协议中,识别准确率和泛化能力都有显著提高。这项研究通过提供一种将深度学习与可能性聚类相结合的综合方法,为该领域做出了贡献,推动了跨域EEG分析的技术水平。