IEEE Trans Biomed Eng. 2019 Mar;66(3):609-622. doi: 10.1109/TBME.2018.2852306. Epub 2018 Jul 2.
We propose a novel approach to predict the Abdominal Aortic Aneurysm (AAA) growth in future time, using longitudinal computer tomography (CT) scans of AAAs that are captured at different times in a patient-specific way.
We adopt a formulation that considers a surface of the AAA as a manifold embedded in a scalar field over the three dimensional (3D) space. For this formulation, we develop our Dynamical Gaussian Process Implicit Surface (DGPIS) model based on observed surfaces of 3D AAAs as visible variables while the scalar fields are hidden. In particular, we use Gaussian process regression to construct the field as an observation model from CT training image data. We then learn a dynamic model to represent the evolution of the field. Finally, we derive the predicted AAA surface from the predicted field along with uncertainty quantified in future time.
A dataset of 7 subjects (4-7 scans) was collected and used to evaluate the proposed method by comparing its prediction Hausdorff distance errors against those of simple extrapolation. In addition, we evaluate the prediction results with respect to a conventional shape analysis technique such as Principal Component Analysis (PCA). All comparative results show the superior prediction performance of the proposed approach.
We introduce a novel approach to predict the AAA growth and its predicted uncertainty in future time, using longitudinal CT scans in a patient-specific fashion.
The capability to predict the AAA shape and its confidence region by our approach establish the potential for guiding clinicians with informed decision in conducting medical treatment and monitoring of AAAs.
我们提出了一种新的方法来预测未来时间的腹主动脉瘤(AAA)生长,该方法使用患者特定方式在不同时间捕获的 AAA 的纵向计算机断层扫描(CT)。
我们采用一种将 AAA 的表面视为嵌入在三维(3D)空间中的标量场中的流形的公式。对于这种公式,我们基于 3D AAA 的观察表面开发了我们的动态高斯过程隐式曲面(DGPIS)模型,作为可见变量,而标量场则是隐藏的。具体来说,我们使用高斯过程回归从 CT 训练图像数据中构建场作为观测模型。然后,我们学习一个动态模型来表示场的演化。最后,我们从预测的场中导出未来时间的预测 AAA 表面及其定量的不确定性。
收集了 7 个受试者(4-7 次扫描)的数据集,并通过将其预测 Hausdorff 距离误差与简单外推的误差进行比较来评估所提出的方法。此外,我们还根据传统的形状分析技术(如主成分分析(PCA))评估了预测结果。所有比较结果均表明,所提出方法的预测性能更优。
我们提出了一种新的方法,通过患者特定的纵向 CT 扫描来预测未来时间的 AAA 生长及其预测不确定性。
我们的方法能够预测 AAA 的形状及其置信区域,这为临床医生提供了指导,以便在进行治疗和监测 AAA 时做出明智的决策。