Suppr超能文献

采用瘤内血流动力学的空间模式分析来描述小的腹主动脉瘤的生长状态。

Characterization of small abdominal aortic aneurysms' growth status using spatial pattern analysis of aneurismal hemodynamics.

机构信息

Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA.

Joint Center for Biocomputing and Digital Health, Health Research Institute, and Institute of Computing and Cybernetics, Michigan Technological University, Houghton, MI, USA.

出版信息

Sci Rep. 2023 Aug 24;13(1):13832. doi: 10.1038/s41598-023-40139-z.

Abstract

Aneurysm hemodynamics is known for its crucial role in the natural history of abdominal aortic aneurysms (AAA). However, there is a lack of well-developed quantitative assessments for disturbed aneurysmal flow. Therefore, we aimed to develop innovative metrics for quantifying disturbed aneurysm hemodynamics and evaluate their effectiveness in predicting the growth status of AAAs, specifically distinguishing between fast-growing and slowly-growing aneurysms. The growth status of aneurysms was classified as fast (≥ 5 mm/year) or slow (< 5 mm/year) based on serial imaging over time. We conducted computational fluid dynamics (CFD) simulations on 70 patients with computed tomography (CT) angiography findings. By converting hemodynamics data (wall shear stress and velocity) located on unstructured meshes into image-like data, we enabled spatial pattern analysis using Radiomics methods, referred to as "Hemodynamics-informatics" (i.e., using informatics techniques to analyze hemodynamic data). Our best model achieved an AUROC of 0.93 and an accuracy of 87.83%, correctly identifying 82.00% of fast-growing and 90.75% of slowly-growing AAAs. Compared with six classification methods, the models incorporating hemodynamics-informatics exhibited an average improvement of 8.40% in AUROC and 7.95% in total accuracy. These preliminary results indicate that hemodynamics-informatics correlates with AAAs' growth status and aids in assessing their progression.

摘要

动脉瘤的血流动力学因其在腹主动脉瘤(AAA)自然史中的关键作用而闻名。然而,对于紊乱的瘤内血流,目前缺乏完善的定量评估方法。因此,我们旨在开发创新的指标来量化紊乱的动脉瘤血流动力学,并评估其在预测 AAA 生长状态方面的有效性,特别是区分快速生长型和缓慢生长型动脉瘤。根据随时间推移的系列影像学检查,将动脉瘤的生长状态分为快速(≥5mm/年)或缓慢(<5mm/年)。我们对 70 名接受 CT 血管造影(CTA)检查的患者进行了计算流体动力学(CFD)模拟。通过将血流动力学数据(壁切应力和速度)从非结构化网格转换为类似图像的数据,我们使用放射组学方法(即使用信息学技术来分析血流动力学数据)进行空间模式分析,称之为“血流动力学-信息学”。我们的最佳模型获得了 0.93 的 AUROC 和 87.83%的准确率,正确识别了 82.00%的快速生长型和 90.75%的缓慢生长型 AAA。与六种分类方法相比,纳入血流动力学信息学的模型在 AUROC 上的平均提高了 8.40%,在总准确率上提高了 7.95%。这些初步结果表明,血流动力学信息学与 AAA 的生长状态相关,有助于评估其进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95cf/10449842/6bdae4086fc3/41598_2023_40139_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验