Suppr超能文献

基于单导联 ECG 信号的小波变换和熵特征的阻塞性睡眠呼吸暂停自动检测。

Automatic Detection of Obstructive Sleep Apnea Using Wavelet Transform and Entropy-Based Features From Single-Lead ECG Signal.

出版信息

IEEE J Biomed Health Inform. 2019 May;23(3):1011-1021. doi: 10.1109/JBHI.2018.2842919. Epub 2018 Jun 1.

Abstract

Obstructive sleep apnea (OSA) is a prevalent sleep disorder and highly affects the quality of human life. Currently, gold standard for OSA detection is polysomnogram. Since this method is time consuming and cost inefficient, practical systems focus on the usage of electrocardiogram (ECG) signals for OSA detection. In this paper, a novel automatic OSA detection method using a single-lead ECG signal has been proposed. A nonlinear feature extraction using wavelet transform (WT) coefficients obtained by an ECG signal decomposition is employed. In addition, different classification methods are investigated. ECG signals are decomposed into eight levels using a Symlet function as a mother Wavelet function with third order. Then, the entropy-based features including fuzzy/approximate/sample/correct conditional entropy as well as other nonlinear features including interquartile range, mean absolute deviation, variance, Poincare plot, and recurrence plot are extracted from WT coefficients. The best features are chosen using the automatic sequential forward feature selection algorithm. In order to assess the introduced method, 95 single-lead ECG recordings are used. The support vector machine classifier having a radial basis function kernel leads to an accuracy of 94.63% (sensitivity: 94.43% and specificity: 94.77%) and 95.71% (sensitivity: 95.83% and specificity: 95.66%) for minute-by-minute and subject-by-subject classifications, respectively. The results show that applying entropy-based features for extracting hidden information of the ECG signals outperforms other available automatic OSA detection methods. The results indicate that a highly accurate OSA detection is attained by just exploiting the single-lead ECG signals. Furthermore, due to the low computational load in the proposed method, it can easily be applied to the home monitoring systems.

摘要

阻塞性睡眠呼吸暂停(OSA)是一种普遍存在的睡眠障碍,严重影响人类生活质量。目前,OSA 的金标准检测方法是多导睡眠图。由于这种方法耗时且成本效率低,实用系统侧重于使用心电图(ECG)信号进行 OSA 检测。在本文中,提出了一种使用单导联 ECG 信号的新型自动 OSA 检测方法。采用基于 ECG 信号分解的小波变换(WT)系数进行非线性特征提取。此外,还研究了不同的分类方法。使用 Symlet 函数作为母小波函数对 ECG 信号进行 8 级分解。然后,从 WT 系数中提取基于熵的特征,包括模糊/近似/样本/正确条件熵以及其他非线性特征,包括四分位距、平均绝对偏差、方差、Poincare 图和递归图。使用自动顺序前向特征选择算法选择最佳特征。为了评估所提出的方法,使用了 95 个单导联 ECG 记录。具有径向基函数核的支持向量机分类器导致分钟级分类的准确率为 94.63%(灵敏度:94.43%和特异性:94.77%)和受试者级分类的准确率为 95.71%(灵敏度:95.83%和特异性:95.66%)。结果表明,应用基于熵的特征从 ECG 信号中提取隐藏信息优于其他可用的自动 OSA 检测方法。结果表明,仅利用单导联 ECG 信号即可实现高精度的 OSA 检测。此外,由于所提出的方法计算负载低,因此可以轻松应用于家庭监测系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验