Suppr超能文献

利用全可编程 SoC 进行神经信号分析:大规模 CMOS 多电极阵列的闭环控制。

Exploiting All Programmable SoCs in Neural Signal Analysis: A Closed-Loop Control for Large-Scale CMOS Multielectrode Arrays.

出版信息

IEEE Trans Biomed Circuits Syst. 2018 Aug;12(4):839-850. doi: 10.1109/TBCAS.2018.2830659. Epub 2018 May 30.

Abstract

Microelectrode array (MEA) systems with up to several thousands of recording electrodes and electrical or optical stimulation capabilities are commercially available or described in the literature. By exploiting their submillisecond and micrometric temporal and spatial resolutions to record bioelectrical signals, such emerging MEA systems are increasingly used in neuroscience to study the complex dynamics of neuronal networks and brain circuits. However, they typically lack the capability of implementing real-time feedback between the detection of neuronal spiking events and stimulation, thus restricting large-scale neural interfacing to open-loop conditions. In order to exploit the potential of such large-scale recording systems and stimulation, we designed and validated a fully reconfigurable FPGA-based processing system for closed-loop multichannel control. By adopting a Xilinx Zynq-all-programmable system on chip that integrates reconfigurable logic and a dual-core ARM-based processor on the same device, the proposed platform permits low-latency preprocessing (filtering and detection) of spikes acquired simultaneously from several thousands of electrode sites. To demonstrate the proposed platform, we tested its performances through ex vivo experiments on the mice retina using a state-of-the-art planar high-density MEA that samples 4096 electrodes at 18 kHz and record light-evoked spikes from several thousands of retinal ganglion cells simultaneously. Results demonstrate that the platform is able to provide a total latency from whole-array data acquisition to stimulus generation below 2 ms. This opens the opportunity to design closed-loop experiments on neural systems and biomedical applications using emerging generations of planar or implantable large-scale MEA systems.

摘要

微电极阵列 (MEA) 系统具有多达数千个记录电极和电或光刺激功能,在商业上可用或在文献中描述。通过利用其亚毫秒和微米级的时间和空间分辨率来记录生物电信号,这种新兴的 MEA 系统在神经科学中越来越多地用于研究神经元网络和大脑回路的复杂动力学。然而,它们通常缺乏在神经元尖峰事件检测和刺激之间实现实时反馈的能力,从而将大规模神经接口限制为开环条件。为了利用这种大规模记录系统和刺激的潜力,我们设计并验证了一种基于完全可重新配置的 FPGA 的处理系统,用于闭环多通道控制。通过采用 Xilinx Zynq 全可编程片上系统,该系统在同一设备上集成了可重新配置逻辑和双核基于 ARM 的处理器,所提出的平台允许对同时从数千个电极位点获取的尖峰进行低延迟预处理(滤波和检测)。为了演示所提出的平台,我们使用最先进的平面高密度 MEA 在离体实验中对小鼠视网膜进行了测试,该 MEA 以 18 kHz 的速率对 4096 个电极进行采样,并同时记录数千个视网膜神经节细胞的光诱发放电。结果表明,该平台能够在从整个阵列数据采集到刺激生成的总延迟低于 2 ms。这为使用新兴的平面或植入式大规模 MEA 系统设计神经系统和生物医学应用的闭环实验提供了机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验