Suppr超能文献

多通道集成电路的特性及其在低伪迹、模式化神经组织电刺激中的应用。

Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue.

机构信息

Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland.

出版信息

J Neural Eng. 2012 Dec;9(6):066005. doi: 10.1088/1741-2560/9/6/066005. Epub 2012 Nov 16.

Abstract

OBJECTIVE

Modern multielectrode array (MEA) systems can record the neuronal activity from thousands of electrodes, but their ability to provide spatio-temporal patterns of electrical stimulation is very limited. Furthermore, the stimulus-related artifacts significantly limit the ability to record the neuronal responses to the stimulation. To address these issues, we designed a multichannel integrated circuit for a patterned MEA-based electrical stimulation and evaluated its performance in experiments with isolated mouse and rat retina.

APPROACH

The Stimchip includes 64 independent stimulation channels. Each channel comprises an internal digital-to-analogue converter that can be configured as a current or voltage source. The shape of the stimulation waveform is defined independently for each channel by the real-time data stream. In addition, each channel is equipped with circuitry for reduction of the stimulus artifact.

MAIN RESULTS

Using a high-density MEA stimulation/recording system, we effectively stimulated individual retinal ganglion cells (RGCs) and recorded the neuronal responses with minimal distortion, even on the stimulating electrodes. We independently stimulated a population of RGCs in rat retina, and using a complex spatio-temporal pattern of electrical stimulation pulses, we replicated visually evoked spiking activity of a subset of these cells with high fidelity. Significance. Compared with current state-of-the-art MEA systems, the Stimchip is able to stimulate neuronal cells with much more complex sequences of electrical pulses and with significantly reduced artifacts. This opens up new possibilities for studies of neuronal responses to electrical stimulation, both in the context of neuroscience research and in the development of neuroprosthetic devices.

摘要

目的

现代多电极阵列(MEA)系统可以从数千个电极记录神经元活动,但它们提供电刺激时空模式的能力非常有限。此外,刺激相关的伪影极大地限制了记录神经元对刺激反应的能力。为了解决这些问题,我们设计了一种用于基于图案 MEA 的电刺激的多通道集成电路,并在离体小鼠和大鼠视网膜实验中评估了其性能。

方法

Stimchip 包括 64 个独立的刺激通道。每个通道包括一个内部数模转换器,可配置为电流或电压源。每个通道的刺激波形形状由实时数据流独立定义。此外,每个通道都配备了用于减少刺激伪影的电路。

主要结果

使用高密度 MEA 刺激/记录系统,我们有效地刺激了单个视网膜神经节细胞(RGC),并在最小失真的情况下记录了神经元反应,即使在刺激电极上也是如此。我们在大鼠视网膜中独立刺激了一群 RGC,并使用电刺激脉冲的复杂时空模式,以高保真度复制了其中一些细胞的视觉诱发放电活动。意义。与当前最先进的 MEA 系统相比,Stimchip 能够以更复杂的电脉冲序列刺激神经元细胞,并且伪影明显减少。这为研究神经元对电刺激的反应开辟了新的可能性,无论是在神经科学研究还是神经假体设备的开发中。

相似文献

1
Properties and application of a multichannel integrated circuit for low-artifact, patterned electrical stimulation of neural tissue.
J Neural Eng. 2012 Dec;9(6):066005. doi: 10.1088/1741-2560/9/6/066005. Epub 2012 Nov 16.
3
Exploiting All Programmable SoCs in Neural Signal Analysis: A Closed-Loop Control for Large-Scale CMOS Multielectrode Arrays.
IEEE Trans Biomed Circuits Syst. 2018 Aug;12(4):839-850. doi: 10.1109/TBCAS.2018.2830659. Epub 2018 May 30.
4
Topographic prominence discriminator for the detection of short-latency spikes of retinal ganglion cells.
J Neural Eng. 2017 Feb;14(1):016017. doi: 10.1088/1741-2552/aa5646. Epub 2017 Jan 3.
5
BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.
Biosens Bioelectron. 2010 Apr 15;25(8):1889-96. doi: 10.1016/j.bios.2010.01.001. Epub 2010 Jan 13.
6
Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
J Neurophysiol. 2006 Jun;95(6):3311-27. doi: 10.1152/jn.01168.2005. Epub 2006 Jan 25.
8
Spike sorting in the presence of stimulation artifacts: a dynamical control systems approach.
J Neural Eng. 2024 Feb 9;21(1):016022. doi: 10.1088/1741-2552/ad228f.
10
Activation of ganglion cells in wild-type and P23H rat retinas with a small subretinal electrode.
Exp Eye Res. 2012 Jun;99:71-7. doi: 10.1016/j.exer.2012.03.016. Epub 2012 Apr 20.

引用本文的文献

1
Starting a synthetic biological intelligence lab from scratch.
Patterns (N Y). 2025 Apr 23;6(5):101232. doi: 10.1016/j.patter.2025.101232. eCollection 2025 May 9.
2
Understanding responses to multi-electrode epiretinal stimulation using a biophysical model.
J Neural Eng. 2025 Jan 23;22(1). doi: 10.1088/1741-2552/ada1fe.
4
Spike sorting in the presence of stimulation artifacts: a dynamical control systems approach.
J Neural Eng. 2024 Feb 9;21(1):016022. doi: 10.1088/1741-2552/ad228f.
6
Inference of Electrical Stimulation Sensitivity from Recorded Activity of Primate Retinal Ganglion Cells.
J Neurosci. 2023 Jun 28;43(26):4808-4820. doi: 10.1523/JNEUROSCI.1023-22.2023. Epub 2023 Jun 2.
7
High-Fidelity Reproduction of Visual Signals by Electrical Stimulation in the Central Primate Retina.
J Neurosci. 2023 Jun 21;43(25):4625-4641. doi: 10.1523/JNEUROSCI.1091-22.2023. Epub 2023 May 15.
8
Oxygen gradient generator to improve modeling of ischemic stroke.
Front Neurosci. 2023 Mar 28;17:1110083. doi: 10.3389/fnins.2023.1110083. eCollection 2023.
9
Focal electrical stimulation of human retinal ganglion cells for vision restoration.
J Neural Eng. 2022 Dec 19;19(6). doi: 10.1088/1741-2552/aca5b5.
10
An open-source transparent microelectrode array.
J Neural Eng. 2022 Apr 13;19(2). doi: 10.1088/1741-2552/ac620d.

本文引用的文献

1
Stimulus-artifact elimination in a multi-electrode system.
IEEE Trans Biomed Circuits Syst. 2008 Mar;2(1):10-21. doi: 10.1109/TBCAS.2008.918285.
2
The development and application of optogenetics.
Annu Rev Neurosci. 2011;34:389-412. doi: 10.1146/annurev-neuro-061010-113817.
3
Probing neural circuitry and function with electrical microstimulation.
Proc Biol Sci. 2011 Apr 22;278(1709):1121-30. doi: 10.1098/rspb.2010.2211. Epub 2011 Jan 19.
4
Optogenetics.
Nat Methods. 2011 Jan;8(1):26-9. doi: 10.1038/nmeth.f.324. Epub 2010 Dec 20.
5
Functional connectivity in the retina at the resolution of photoreceptors.
Nature. 2010 Oct 7;467(7316):673-7. doi: 10.1038/nature09424.
6
Receptive field mosaics of retinal ganglion cells are established without visual experience.
J Neurophysiol. 2010 Apr;103(4):1856-64. doi: 10.1152/jn.00896.2009. Epub 2010 Jan 27.
7
BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.
Biosens Bioelectron. 2010 Apr 15;25(8):1889-96. doi: 10.1016/j.bios.2010.01.001. Epub 2010 Jan 13.
8
Loss of responses to visual but not electrical stimulation in ganglion cells of rats with severe photoreceptor degeneration.
J Neurophysiol. 2009 Dec;102(6):3260-9. doi: 10.1152/jn.00663.2009. Epub 2009 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验