Suppr超能文献

设计最优实验以区分相互作用图模型。

Designing Optimal Experiments to Discriminate Interaction Graph Models.

作者信息

Thiele Sven, Heise Sandra, Hessenkemper Wiebke, Bongartz Hannes, Fensky Melissa, Schaper Fred, Klamt Steffen

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 May-Jun;16(3):925-935. doi: 10.1109/TCBB.2018.2812184.

Abstract

Modern methods for the inference of cellular networks from experimental data often express nondeterminism by proposing an ensemble of candidate models with similar properties. To further discriminate among these model candidates, new experiments need to be carried out. Theoretically, the number of possible experiments is exponential in the number of possible perturbations. In praxis, experiments are expensive and usually there exist several constraints limiting which experiments can be performed. Limiting factors may exist on the combinations of perturbations that are technically possible, which components can be measured, and limitations on the number of affordable experiments. Further, not all experiments are equally well suited to discriminate model candidates. Therefore, the goal of optimal experiment design is to determine those experiments that discriminate most of the candidates while minimizing the costs. We present an approach for experiment planning with interaction graph models and sign consistency methods. This new approach can be used in combination with methods for network inference and consistency checking. The proposed method determines experiments which are most suitable to deliver results that reduce the number of candidate models. We applied our method to study the Erythropoietin signal transduction in human kidney cells HEK293. We first used simulated experiment data from an ODE model to demonstrate in silico that our experimental design results in the inference of the gold standard model. Finally, we used the approach to plan in vivo experiments that enabled us to discriminate model candidates for the Erythropoietin signal transduction in this cell line.

摘要

从实验数据推断细胞网络的现代方法通常通过提出一组具有相似特性的候选模型来表达不确定性。为了进一步区分这些候选模型,需要进行新的实验。从理论上讲,可能的实验数量与可能的扰动数量呈指数关系。在实践中,实验成本高昂,而且通常存在若干限制条件,限制了哪些实验可以进行。限制因素可能存在于技术上可行的扰动组合、可以测量哪些组件以及可承受的实验数量的限制上。此外,并非所有实验都同样适合区分候选模型。因此,最优实验设计的目标是确定那些能够区分大多数候选模型同时将成本降至最低的实验。我们提出了一种使用交互图模型和符号一致性方法进行实验规划的方法。这种新方法可以与网络推断和一致性检查方法结合使用。所提出的方法确定最适合提供能够减少候选模型数量的结果的实验。我们将我们的方法应用于研究人肾细胞HEK293中的促红细胞生成素信号转导。我们首先使用来自一个常微分方程模型的模拟实验数据在计算机上证明我们的实验设计能够推断出金标准模型。最后,我们使用该方法来规划体内实验,这使我们能够区分该细胞系中促红细胞生成素信号转导的候选模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验