Li Wei, Gong Huajun, Yang Ruigang
IEEE Trans Vis Comput Graph. 2019 Jun;25(6):2296-2303. doi: 10.1109/TVCG.2018.2831220. Epub 2018 Apr 30.
This paper deals with the texture mapping of a triangular mesh model given a set of calibrated images. Different from the traditional approach of applying projective texture mapping with model parameterizations, we develop an image-space texture optimization scheme that aims to reduce visible seams or misalignment at texture or depth boundaries. Our novel scheme starts with an efficient local (and parallel) texture adjustment scheme at these boundaries, followed by a global correction step to rectify potential texture distortions caused by the local movement. Our phased optimization scheme achieves 50$\sim$∼100 times speed up on GPU (or 6× on CPU) compared to previous state-of-the-art methods. Experiments on a variety of models showed that we achieve this significant speed-up without sacrificing texture quality. Our approach significantly improves resilience to modeling and calibration errors, thereby allowing fast and fully automatic creation of textured models using commodity depth sensors by untrained users.
本文探讨了给定一组校准图像时三角网格模型的纹理映射。与应用带有模型参数化的投影纹理映射的传统方法不同,我们开发了一种图像空间纹理优化方案,旨在减少纹理或深度边界处可见的接缝或错位。我们的新颖方案首先在这些边界处采用高效的局部(且并行)纹理调整方案,随后进行全局校正步骤,以纠正由局部移动引起的潜在纹理失真。与先前的最先进方法相比,我们的分阶段优化方案在GPU上实现了50至100倍的加速(在CPU上为6倍)。在各种模型上进行的实验表明,我们在不牺牲纹理质量的情况下实现了这种显著的加速。我们的方法显著提高了对建模和校准误差的恢复能力,从而允许未经训练的用户使用商用深度传感器快速且全自动地创建纹理模型。