Suppr超能文献

基于Patchmatch的辐射变化下鲁棒立体匹配

Patchmatch-Based Robust Stereo Matching Under Radiometric Changes.

作者信息

Lim Jaeseung, Lee Sankeun

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 May;41(5):1203-1212. doi: 10.1109/TPAMI.2018.2819662. Epub 2018 Mar 26.

Abstract

In the real world, the two challenges of stereo vision system include a robust system under various radiometric changes and real-time process. To extract depth information from stereoscopic images, this paper proposes Patchmatch-based robust and fast stereo matching under radiometric changes. For this, a cost function was designed and minimized for estimating an accurate disparity map. Specifically, we used a prior probability to minimize the occlusion region and a smoothness term that considers convexity of objects to extract a fine disparity map. For evaluating the performance of the proposed scheme, we used Middlebury stereo data sets with radiometric changes. The experimental result showed that the proposed method outperforms state-of-the-art methods by up to 3.35 percent better and a range of 4.71 - 27.24 times faster result in terms of bad pixel error and processing time, respectively. Therefore, we believe that the proposed scheme can be a useful tool for computer vision-based applications.

摘要

在现实世界中,立体视觉系统面临的两大挑战包括在各种辐射变化下的稳健性以及实时处理能力。为了从立体图像中提取深度信息,本文提出了一种基于Patchmatch的在辐射变化下稳健且快速的立体匹配方法。为此,设计了一个代价函数并将其最小化以估计准确的视差图。具体而言,我们使用先验概率来最小化遮挡区域,并使用一个考虑物体凸性的平滑项来提取精细的视差图。为了评估所提方案的性能,我们使用了具有辐射变化的Middlebury立体数据集。实验结果表明,所提方法在坏像素误差和处理时间方面分别比现有方法性能提升高达3.35%,速度快4.71 - 27.24倍。因此,我们认为所提方案可以成为基于计算机视觉应用的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验