Suppr超能文献

基于数据驱动的化疗后弥漫性低级别胶质瘤预测模型。

Data-Driven Predictive Models of Diffuse Low-Grade Gliomas Under Chemotherapy.

出版信息

IEEE J Biomed Health Inform. 2019 Jan;23(1):38-46. doi: 10.1109/JBHI.2018.2834159. Epub 2018 May 7.

Abstract

Diffuse low-grade gliomas (DLGG) are brain tumors of young adults. They affect the quality of life of the inflicted patients and, if untreated, they evolve into higher grade tumors where the patient's life is at risk. Therapeutic management of DLGGs includes chemotherapy, and tumor diameter is particularly important for the follow-up of DLGG evolution. In fact, the main clinical basis for deciding whether to continue chemotherapy is tumor diameter growth rate. In order to reliably assist the doctors in selecting the most appropriate time to stop treatment, we propose a novel clinical decision support system. Based on two mathematical models, one linear and one exponential, we are able to predict the evolution of tumor diameter under Temozolomide chemotherapy as a first treatment and thus offer a prognosis on when to end it. We present the results of an implementation of these models on a database of 42 patients from Nancy and Montpellier University Hospitals. In this database, 38 patients followed the linear model and four patients followed the exponential model. From a training data set of a minimal size of five, we are able to predict the next tumor diameter with high accuracy. Thanks to the corresponding prediction interval, it is possible to check if the new observation corresponds to the predicted diameter. If the observed diameter is within the prediction interval, the clinician is notified that the trend is within a normal range. Otherwise, the practitioner is alerted of a significant change in tumor diameter.

摘要

弥漫性低级别胶质瘤 (DLGG) 是年轻人的脑肿瘤。它们会影响患者的生活质量,如果不治疗,它们会发展成高级别肿瘤,危及患者的生命。DLGG 的治疗管理包括化疗,肿瘤直径对于 DLGG 进展的随访尤为重要。事实上,决定是否继续化疗的主要临床依据是肿瘤直径增长率。为了可靠地帮助医生选择最合适的停止治疗时间,我们提出了一种新的临床决策支持系统。基于一个线性模型和一个指数模型,我们能够预测替莫唑胺化疗作为一线治疗后肿瘤直径的演变,从而提供何时结束治疗的预后。我们展示了在南锡和蒙彼利埃大学医院的 42 名患者数据库中实施这些模型的结果。在该数据库中,38 名患者遵循线性模型,4 名患者遵循指数模型。从最小大小为 5 的训练数据集,我们能够以高精度预测下一个肿瘤直径。由于相应的预测区间,可以检查新的观察值是否与预测直径相对应。如果观察到的直径在预测区间内,则通知临床医生趋势处于正常范围内。否则,医生会注意到肿瘤直径的显著变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验