Suppr超能文献

扩散峰度成像中的胶质瘤特异性扩散特征

Glioma-Specific Diffusion Signature in Diffusion Kurtosis Imaging.

作者信息

Hempel Johann-Martin, Brendle Cornelia, Adib Sasan Darius, Behling Felix, Tabatabai Ghazaleh, Castaneda Vega Salvador, Schittenhelm Jens, Ernemann Ulrike, Klose Uwe

机构信息

Department of Neuroradiology, University Hospital Tübingen, Eberhard Karls University, 72076 Tübingen, Germany.

Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard Karls University, 72076 Tübingen, Germany.

出版信息

J Clin Med. 2021 May 26;10(11):2325. doi: 10.3390/jcm10112325.

Abstract

PURPOSE

This study aimed to assess the relationship between mean kurtosis (MK) and mean diffusivity (MD) values from whole-brain diffusion kurtosis imaging (DKI) parametric maps in preoperative magnetic resonance (MR) images from 2016 World Health Organization Classification of Tumors of the Central Nervous System integrated glioma groups.

METHODS

Seventy-seven patients with histopathologically confirmed treatment-naïve glioma were retrospectively assessed between 1 August 2013 and 30 October 2017. The area on scatter plots with a specific combination of MK and MD values, not occurring in the healthy brain, was labeled, and the corresponding voxels were visualized on the fluid-attenuated inversion recovery (FLAIR) images. Reversely, the labeled voxels were compared to those of the manually segmented tumor volume, and the Dice similarity coefficient was used to investigate their spatial overlap.

RESULTS

A specific combination of MK and MD values in whole-brain DKI maps, visualized on a two-dimensional scatter plot, exclusively occurs in glioma tissue including the perifocal infiltrative zone and is absent in tissue of the normal brain or from other intracranial compartments.

CONCLUSIONS

A unique diffusion signature with a specific combination of MK and MD values from whole-brain DKI can identify diffuse glioma without any previous segmentation. This feature might influence artificial intelligence algorithms for automatic tumor segmentation and provide new aspects of tumor heterogeneity.

摘要

目的

本研究旨在评估2016年世界卫生组织中枢神经系统肿瘤分类综合胶质瘤组术前磁共振(MR)图像中,全脑扩散峰度成像(DKI)参数图的平均峰度(MK)和平均扩散率(MD)值之间的关系。

方法

对2013年8月1日至2017年10月30日期间77例经组织病理学证实未经治疗的胶质瘤患者进行回顾性评估。在散点图上标记出健康大脑中未出现的具有特定MK和MD值组合的区域,并在液体衰减反转恢复(FLAIR)图像上显示相应的体素。反之,将标记的体素与手动分割的肿瘤体积的体素进行比较,并使用Dice相似系数来研究它们的空间重叠。

结果

在二维散点图上显示的全脑DKI图中,MK和MD值的特定组合仅出现在包括瘤周浸润区的胶质瘤组织中,而在正常脑组织或其他颅内区域的组织中不存在。

结论

全脑DKI中具有MK和MD值特定组合的独特扩散特征无需任何预先分割即可识别弥漫性胶质瘤。这一特征可能会影响用于自动肿瘤分割的人工智能算法,并为肿瘤异质性提供新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d4/8199055/add74e89c2e5/jcm-10-02325-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验