Suppr超能文献

SecureLR:通过混合加密协议实现安全逻辑回归模型。

SecureLR: Secure Logistic Regression Model via a Hybrid Cryptographic Protocol.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 Jan-Feb;16(1):113-123. doi: 10.1109/TCBB.2018.2833463. Epub 2018 May 7.

Abstract

Machine learning applications are intensively utilized in various science fields, and increasingly the biomedical and healthcare sector. Applying predictive modeling to biomedical data introduces privacy and security concerns requiring additional protection to prevent accidental disclosure or leakage of sensitive patient information. Significant advancements in secure computing methods have emerged in recent years, however, many of which require substantial computational and/or communication overheads, which might hinder their adoption in biomedical applications. In this work, we propose SecureLR, a novel framework allowing researchers to leverage both the computational and storage capacity of Public Cloud Servers to conduct learning and predictions on biomedical data without compromising data security or efficiency. Our model builds upon homomorphic encryption methodologies with hardware-based security reinforcement through Software Guard Extensions (SGX), and our implementation demonstrates a practical hybrid cryptographic solution to address important concerns in conducting machine learning with public clouds.

摘要

机器学习应用在各个科学领域得到了广泛应用,生物医学和医疗保健领域的应用也越来越多。将预测建模应用于生物医学数据会带来隐私和安全问题,需要额外的保护措施来防止敏感患者信息的意外泄露。近年来,出现了许多安全计算方法的重大进展,然而,其中许多方法需要大量的计算和/或通信开销,这可能会阻碍它们在生物医学应用中的采用。在这项工作中,我们提出了 SecureLR,这是一种新的框架,允许研究人员利用公共云服务器的计算和存储能力在生物医学数据上进行学习和预测,而不会危及数据安全性或效率。我们的模型建立在同态加密方法的基础上,并通过软件保护扩展 (SGX) 进行硬件级安全强化,我们的实现展示了一种实用的混合加密解决方案,以解决在公共云中进行机器学习的重要问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验