Suppr超能文献

基于堆叠分类器的风力涡轮机多故障检测与分类

Multi-Fault Detection and Classification of Wind Turbines Using Stacking Classifier.

机构信息

Department of Computer Engineering, Jeju National University, Jeju-si 63243, Korea.

出版信息

Sensors (Basel). 2022 Sep 14;22(18):6955. doi: 10.3390/s22186955.

Abstract

Wind turbines are widely used worldwide to generate clean, renewable energy. The biggest issue with a wind turbine is reducing failures and downtime, which lowers costs associated with operations and maintenance. Wind turbines' consistency and timely maintenance can enhance their performance and dependability. Still, the traditional routine configuration makes detecting faults of wind turbines difficult. Supervisory control and data acquisition (SCADA) produces reliable and affordable quality data for the health condition of wind turbine operations. For wind power to be sufficiently reliable, it is crucial to retrieve useful information from SCADA successfully. This article proposes a new AdaBoost, K-nearest neighbors, and logistic regression-based stacking ensemble (AKL-SE) classifier to classify the faults of the wind turbine condition monitoring system. A stacking ensemble classifier integrates different classification models to enhance the model's accuracy. We have used three classifiers, AdaBoost, K-nearest neighbors, and logistic regression, as base models to make output. The output of these three classifiers is used as input in the logistic regression classifier's meta-model. To improve the data validity, SCADA data are first preprocessed by cleaning and removing any abnormal data. Next, the Pearson correlation coefficient was used to choose the input variables. The Stacking Ensemble classifier was trained using these parameters. The analysis demonstrates that the suggested method successfully identifies faults in wind turbines when applied to local 3 MW wind turbines. The proposed approach shows the potential for effective wind energy use, which could encourage the use of clean energy.

摘要

风力涡轮机在全球范围内被广泛用于产生清洁、可再生的能源。风力涡轮机最大的问题是减少故障和停机时间,这降低了运营和维护成本。风力涡轮机的一致性和及时维护可以提高其性能和可靠性。然而,传统的常规配置使得风力涡轮机的故障检测变得困难。监控和数据采集(SCADA)为风力涡轮机运行的健康状况提供可靠且经济实惠的优质数据。为了使风力发电足够可靠,成功从 SCADA 中检索有用信息至关重要。本文提出了一种新的基于 AdaBoost、K-最近邻和逻辑回归的堆叠集成(AKL-SE)分类器,用于对风力涡轮机状态监测系统的故障进行分类。堆叠集成分类器集成了不同的分类模型,以提高模型的准确性。我们使用了三个分类器,AdaBoost、K-最近邻和逻辑回归,作为生成输出的基础模型。这三个分类器的输出被用作逻辑回归分类器的元模型的输入。为了提高数据的有效性,首先通过清理和去除任何异常数据来预处理 SCADA 数据。接下来,使用皮尔逊相关系数选择输入变量。使用这些参数对堆叠集成分类器进行了训练。分析表明,该方法应用于本地 3MW 风力涡轮机时,能够成功识别风力涡轮机的故障。该方法展示了有效利用风能的潜力,这可能会鼓励使用清洁能源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce5f/9505315/1a34cc888267/sensors-22-06955-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验