IEEE Trans Med Imaging. 2018 Oct;37(10):2367-2377. doi: 10.1109/TMI.2018.2828303. Epub 2018 Apr 27.
The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems.
电阻抗断层成像(EIT)的数学问题是一个高度非线性不适定的反问题,需要精心设计的重建过程来确保可靠的图像生成。D-bar 方法基于严格的数学分析,并通过对相关非线性傅里叶数据进行低通滤波来提供稳健的直接重建。类似于线性傅里叶数据的低通滤波,仅在图像恢复过程中使用低频会导致模糊的图像,缺乏清晰的特征,例如器官边界清晰。卷积神经网络为卷积直接重建提供了一个强大的后处理框架。在本文中,我们证明了这些 CNN 技术即使对于 EIT 的高度非线性反问题也能得到清晰可靠的重建。该网络在模拟示例数据集上进行训练,然后应用于实验数据,而无需进行额外的转移训练。使用来自 ACT4 和 KIT4 EIT 系统的实验 EIT 数据展示了绝对 EIT 图像的结果。