Suppr超能文献

离散余弦变换表示的结构先验可提高 EIT 功能成像。

Structural priors represented by discrete cosine transform improve EIT functional imaging.

机构信息

Institute of Technical Medicine (ITeM), Furtwangen University, Villingen-Schwenningen, Germany.

Faculty of Engineering, University of Freiburg, Freiburg, Germany.

出版信息

PLoS One. 2023 May 11;18(5):e0285619. doi: 10.1371/journal.pone.0285619. eCollection 2023.

Abstract

Structural prior information can improve electrical impedance tomography (EIT) reconstruction. In this contribution, we introduce a discrete cosine transformation-based (DCT-based) EIT reconstruction algorithm to demonstrate a way to incorporate the structural prior with the EIT reconstruction process. Structural prior information is obtained from other available imaging methods, e.g., thorax-CT. The DCT-based approach creates a functional EIT image of regional lung ventilation while preserving the introduced structural information. This leads to an easier interpretation in clinical settings while maintaining the advantages of EIT in terms of bedside monitoring during mechanical ventilation. Structural priors introduced in the DCT-based approach are of two categories in terms of different levels of information included: a contour prior only differentiates lung and non-lung region, while a detail prior includes information, such as atelectasis, within the lung area. To demonstrate the increased interpretability of the EIT image through structural prior in the DCT-based approach, the DCT-based reconstructions were compared with reconstructions from a widely applied one-step Gauss-Newton solver with background prior and from the advanced GREIT algorithm. The comparisons were conducted both on simulation data and retrospective patient data. In the simulation, we used two sets of forward models to simulate different lung conditions. A contour prior and a detail prior were derived from simulation ground truth. With these two structural priors, the reconstructions from the DCT-based approach were compared with the reconstructions from both the one-step Gauss-Newton solver and the GREIT. The difference between the reconstructions and the simulation ground truth is calculated by the ℓ2-norm image difference. In retrospective patient data analysis, datasets from six lung disease patients were included. For each patient, a detail prior was derived from the patient's CT, respectively. The detail prior was used for the reconstructions using the DCT-based approach, which was compared with the reconstructions from the GREIT. The reconstructions from the DCT-based approach are more comprehensive and interpretable in terms of preserving the structure specified by the priors, both in simulation and retrospective patient data analysis. In simulation analysis, the ℓ2-norm image difference of the DCT-based approach with a contour prior decreased on average by 34% from GREIT and 49% from the Gauss-Newton solver with background prior; for reconstructions of the DCT-based approach with detail prior, on average the ℓ2-norm image difference is 53% less than GREIT and 63% less than the reconstruction with background prior. In retrospective patient data analysis, the reconstructions from both the DCT-based approach and GREIT can indicate the current patient status, but the DCT-based approach yields more interpretable results. However, it is worth noting that the preserved structure in the DCT-based approach is derived from another imaging method, not from the EIT measurement. If the structural prior is outdated or wrong, the result might be misleadingly interpreted, which induces false clinical conclusions. Further research in terms of evaluating the validity of the structural prior and detecting the outdated prior is necessary.

摘要

结构先验信息可以改善电阻抗断层成像(EIT)重建。在本研究中,我们引入了一种基于离散余弦变换(DCT)的 EIT 重建算法,以展示一种将结构先验信息与 EIT 重建过程相结合的方法。结构先验信息是从其他可用的成像方法(如胸部 CT)中获得的。基于 DCT 的方法创建了区域性肺通气的功能 EIT 图像,同时保留了引入的结构信息。这在临床环境中更容易解释,同时保持了 EIT 在机械通气期间床边监测的优势。基于 DCT 的方法中引入的结构先验信息有两种类型,包括不同级别的信息:轮廓先验仅区分肺区和非肺区,而细节先验则包括肺区内的信息,如肺不张。为了展示基于 DCT 的方法中结构先验对 EIT 图像可解释性的提高,我们将基于 DCT 的重建与广泛应用的一步高斯牛顿求解器的背景先验重建和先进的 GREIT 算法重建进行了比较。比较是在模拟数据和回顾性患者数据上进行的。在模拟中,我们使用两组正向模型来模拟不同的肺条件。轮廓先验和细节先验是从模拟的真实情况中得出的。使用这两个结构先验,我们将基于 DCT 的方法的重建结果与一步高斯牛顿求解器和 GREIT 的重建结果进行了比较。通过 ℓ2 范数图像差计算重建结果与模拟真实情况之间的差异。在回顾性患者数据分析中,纳入了六名肺病患者的数据。对于每个患者,从患者的 CT 中分别得出一个细节先验。基于 DCT 的方法使用细节先验进行重建,并与 GREIT 的重建结果进行了比较。在模拟和回顾性患者数据分析中,基于 DCT 的方法的重建结果在保留先验指定的结构方面更加全面和易于解释。在模拟分析中,轮廓先验的基于 DCT 的方法的 ℓ2 范数图像差平均比 GREIT 减少了 34%,比具有背景先验的高斯牛顿求解器减少了 49%;对于细节先验的基于 DCT 的方法的重建,平均 ℓ2 范数图像差比 GREIT 减少了 53%,比具有背景先验的重建减少了 63%。在回顾性患者数据分析中,基于 DCT 的方法和 GREIT 的重建都可以指示当前患者的状态,但基于 DCT 的方法的结果更易于解释。然而,值得注意的是,基于 DCT 的方法中保留的结构是从另一种成像方法中获得的,而不是从 EIT 测量中获得的。如果结构先验信息过时或错误,结果可能会被误导性地解释,从而导致错误的临床结论。需要进一步研究评估结构先验的有效性和检测过时先验的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3816/10174522/795583740b86/pone.0285619.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验