Suppr超能文献

放射性核素肾小球滤过率估算中感兴趣区自动检测方法。

Automated Region of Interest Detection Method in Scintigraphic Glomerular Filtration Rate Estimation.

出版信息

IEEE J Biomed Health Inform. 2019 Mar;23(2):787-794. doi: 10.1109/JBHI.2018.2845879. Epub 2018 Jun 11.

Abstract

The glomerular filtration rate (GFR) is a crucial index to measure renal function. In daily clinical practice, the GFR can be estimated using the Gates method, which requires the clinicians to define the region of interest (ROI) for the kidney and the corresponding background in dynamic renal scintigraphy. The manual placement of ROIs to estimate the GFR is subjective and labor-intensive, however, making it an undesirable and unreliable process. This work presents a fully automated ROI detection method to achieve accurate and robust GFR estimations. After image preprocessing, the ROI for each kidney was delineated using a shape prior constrained level set (spLS) algorithm and then the corresponding background ROIs were obtained according to the defined kidney ROIs. In computer simulations, the spLS method had the best performance in kidney ROI detection compared with the previous threshold method (threshold) and the Chan-Vese level set (cvLS) method. In further clinical applications, 223 sets of Tc-diethylenetriaminepentaacetic acid renal scintigraphic images from patients with abnormal renal function were reviewed. Compared with the former ROI detection methods (threshold and cvLS), the GFR estimations based on the ROIs derived by the spLS method had the highest consistency and correlations (r = 0.98, p < 0.001) with the reference estimated by experienced physicians. The results indicate that the proposed automated ROI detection method has great potential in automated ROI detection for accurate and robust GFR estimation in dynamic renal scintigraphy.

摘要

肾小球滤过率(GFR)是衡量肾功能的重要指标。在日常临床实践中,可以使用 Gates 方法估计 GFR,该方法需要临床医生在动态肾闪烁显像中定义肾脏的感兴趣区域(ROI)和相应的背景。手动放置 ROI 来估计 GFR 是主观的和劳动密集型的,因此不是一个理想和可靠的过程。本研究提出了一种全自动 ROI 检测方法,以实现准确和稳健的 GFR 估计。在图像预处理后,使用形状先验约束水平集(spLS)算法对每个肾脏的 ROI 进行描绘,然后根据定义的肾脏 ROI 获得相应的背景 ROI。在计算机模拟中,spLS 方法在肾脏 ROI 检测方面的性能优于先前的阈值方法(threshold)和 Chan-Vese 水平集(cvLS)方法。在进一步的临床应用中,回顾了 223 例来自肾功能异常患者的 Tc-二乙三胺五乙酸肾闪烁显像图像。与以前的 ROI 检测方法(threshold 和 cvLS)相比,基于 spLS 方法得出的 ROI 进行 GFR 估计与经验丰富的医生参考估计具有最高的一致性和相关性(r = 0.98,p < 0.001)。结果表明,所提出的自动 ROI 检测方法在动态肾闪烁显像中具有准确和稳健的 GFR 估计的自动 ROI 检测方面具有很大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验