Suppr超能文献

基于深度残差神经网络的稳健脚步声识别的时空表示分析。

Analysis of Spatio-Temporal Representations for Robust Footstep Recognition with Deep Residual Neural Networks.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):285-296. doi: 10.1109/TPAMI.2018.2799847. Epub 2018 Jan 30.

Abstract

Human footsteps can provide a unique behavioural pattern for robust biometric systems. We propose spatio-temporal footstep representations from floor-only sensor data in advanced computational models for automatic biometric verification. Our models deliver an artificial intelligence capable of effectively differentiating the fine-grained variability of footsteps between legitimate users (clients) and impostor users of the biometric system. The methodology is validated in the largest to date footstep database, containing nearly 20,000 footstep signals from more than 120 users. The database is organized by considering a large cohort of impostors and a small set of clients to verify the reliability of biometric systems. We provide experimental results in 3 critical data-driven security scenarios, according to the amount of footstep data made available for model training: at airports security checkpoints (smallest training set), workspace environments (medium training set) and home environments (largest training set). We report state-of-the-art footstep recognition rates with an optimal equal false acceptance and false rejection rate (equal error rate) of 0.7 percent an improvement ratio of 371 percent compared to previous state-of-the-art. We perform a feature analysis of deep residual neural networks showing effective clustering of client's footstep data and to provide insights of the feature learning process.

摘要

人类的脚步声可以为强大的生物识别系统提供独特的行为模式。我们从仅基于地板的传感器数据中提出了时空脚步表示,以在先进的计算模型中实现自动生物识别验证。我们的模型提供了一种人工智能,能够有效地区分生物识别系统中合法用户(客户端)和冒名用户的脚步细微变化。该方法在迄今为止最大的脚步数据库中得到了验证,该数据库包含来自 120 多名用户的近 20000 个脚步信号。该数据库的组织考虑了大量的冒名用户和一小部分客户端,以验证生物识别系统的可靠性。根据模型训练可用的脚步数据量,我们在 3 个关键的数据驱动安全场景中提供了实验结果:机场安检点(最小训练集)、工作场所环境(中等训练集)和家庭环境(最大训练集)。我们报告了最先进的脚步识别率,最优的误识率和拒识率(等错误率)为 0.7%,与之前的最先进水平相比,提高了 371%。我们对深度残差神经网络进行了特征分析,展示了客户端脚步数据的有效聚类,并提供了特征学习过程的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验