Larracy Robyn, Phinyomark Angkoon, Salehi Ala, MacDonald Eve, Kazemi Saeed, Bashar Shikder Shafiul, Tabor Aaron, Scheme Erik
University of New Brunswick, Institute of Biomedical Engineering, Fredericton, E3B 5A3, Canada.
Sci Data. 2025 Aug 13;12(1):1415. doi: 10.1038/s41597-025-05792-1.
Gait refers to the patterns of limb movement generated during walking, which are unique to each individual due to both physical and behavioural traits. Walking patterns have been widely studied in biometrics, biomechanics, sports, and rehabilitation. While traditional methods rely on video and motion capture, advances in plantar pressure sensing technology now offer deeper insights into gait. However, underfoot pressures during walking remain underexplored due to the lack of large, publicly accessible datasets. To address this, we introduce the UNB StepUP-P150 dataset: a footStep database for gait analysis and recognition using Underfoot Pressure, including data from 150 individuals. This dataset comprises high-resolution plantar pressure data (4 sensors/cm) collected using a 1.2m by 3.6m pressure-sensing walkway. It contains over 200,000 footsteps from participants walking with various speeds (preferred, slow-to-stop, fast, and slow) and footwear conditions (barefoot, standard shoes, and two personal shoes), supporting advancements in biometric gait recognition and presenting new research opportunities in biomechanics and deep learning. UNB StepUP-P150 establishes a new benchmark for plantar pressure-based gait analysis and recognition.
步态是指行走过程中肢体运动的模式,由于身体和行为特征的不同,每个人的步态都是独特的。行走模式在生物识别、生物力学、体育和康复领域得到了广泛研究。传统方法依赖于视频和动作捕捉,而足底压力传感技术的进步现在为步态提供了更深入的见解。然而,由于缺乏大型的、可公开获取的数据集,行走过程中的足底压力仍未得到充分探索。为了解决这个问题,我们引入了UNB StepUP - P150数据集:一个用于使用足底压力进行步态分析和识别的脚步数据库,其中包括来自150个人的数据。该数据集包含使用1.2米×3.6米的压力传感通道收集的高分辨率足底压力数据(每厘米4个传感器)。它包含来自参与者以各种速度(偏好速度、慢走至停止、快速和慢速)行走以及不同鞋类条件(赤脚、标准鞋和两双个人鞋子)下的超过200,000个脚步数据,支持生物识别步态识别技术的进步,并为生物力学和深度学习带来新的研究机会。UNB StepUP - P150为基于足底压力的步态分析和识别建立了一个新的基准。