Suppr超能文献

Nonfragile State Estimation of Quantized Complex Networks With Switching Topologies.

作者信息

Chen Michael Z Q

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):5111-5121. doi: 10.1109/TNNLS.2018.2790982. Epub 2018 Feb 1.

Abstract

This paper considers the nonfragile $H_\infty $ estimation problem for a class of complex networks with switching topologies and quantization effects. The network architecture is assumed to be dynamic and evolves with time according to a random process subject to a sojourn probability. The coupled signal is to be quantized before transmission due to power and bandwidth constraints, and the quantization errors are transformed into sector-bounded uncertainties. The concept of nonfragility is introduced by inserting randomly occurred uncertainties into the estimator parameters to cope with the unavoidable small gain variations emerging from the implementations of estimators. Both the quantizers and the estimators have several operation modes depending on the switching signal of the underlying network structure. A sufficient condition is provided via a linear matrix inequality approach to ensure the estimation error dynamic to be stochastically stable in the absence of external disturbances, and the $H_\infty $ performance with a prescribed index is also satisfied. Finally, a numerical example is presented to clarify the validity of the proposed method.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验