Suppr超能文献

基于稳健伪随机场建模的经验贝叶斯光场立体匹配

Empirical Bayesian Light-Field Stereo Matching by Robust Pseudo Random Field Modeling.

作者信息

Huang Chao-Tsung

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Mar;41(3):552-565. doi: 10.1109/TPAMI.2018.2809502. Epub 2018 Feb 26.

Abstract

Light-field stereo matching problems are commonly modeled by Markov Random Fields (MRFs) for statistical inference of depth maps. Nevertheless, most previous approaches did not adapt to image statistics but instead adopted fixed model parameters. They explored explicit vision cues, such as depth consistency and occlusion, to provide local adaptability and enhance depth quality. However, such additional assumptions could end up confining their applicability, e.g. algorithms designed for dense view sampling are not suitable for sparse one. In this paper, we get back to MRF fundamentals and develop an empirical Bayesian framework-Robust Pseudo Random Field-to explore intrinsic statistical cues for broad applicability. Based on pseudo-likelihoods with hidden soft-decision priors, we apply soft expectation-maximization (EM) for good model fitting and perform hard EM for robust depth estimation. We introduce novel pixel difference models to enable such adaptability and robustness simultaneously. Accordingly, we devise a stereo matching algorithm to employ this framework on dense, sparse, and even denoised light fields. It can be applied to both true-color and grey-scale pixels. Experimental results show that it estimates scene-dependent parameters robustly and converges quickly. In terms of depth accuracy and computation speed, it also outperforms state-of-the-art algorithms constantly.

摘要

光场立体匹配问题通常通过马尔可夫随机场(MRF)进行建模,以对深度图进行统计推断。然而,大多数先前的方法并未适应图像统计信息,而是采用固定的模型参数。它们探索了诸如深度一致性和遮挡等明确的视觉线索,以提供局部适应性并提高深度质量。然而,这种额外的假设最终可能会限制其适用性,例如,为密集视图采样设计的算法不适用于稀疏视图采样。在本文中,我们回归到MRF的基本原理,并开发了一个经验贝叶斯框架——鲁棒伪随机场,以探索具有广泛适用性的内在统计线索。基于具有隐藏软决策先验的伪似然,我们应用软期望最大化(EM)进行良好的模型拟合,并执行硬EM进行鲁棒的深度估计。我们引入了新颖的像素差异模型,以同时实现这种适应性和鲁棒性。相应地,我们设计了一种立体匹配算法,将此框架应用于密集、稀疏甚至去噪的光场。它可以应用于真彩色和灰度像素。实验结果表明,它能够稳健地估计场景相关参数并快速收敛。在深度精度和计算速度方面,它也始终优于现有算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验