IEEE/ACM Trans Comput Biol Bioinform. 2018 Nov-Dec;15(6):2060-2066. doi: 10.1109/TCBB.2018.2808529. Epub 2018 Feb 22.
Due to the rapid progress of biological networks for modeling biological systems, a lot of biomolecular networks have been producing more and more protein-protein interaction (PPI) data. Analyzing protein-protein interaction networks aims to find regions of topological and functional (dis)similarities between molecular networks of different species. The study of PPI networks has the potential to teach us as much about life process and diseases at the molecular level. Although few methods have been developed for multiple PPI network alignment and thus, new network alignment methods are of a compelling need. In this paper, we propose a novel algorithm for a global alignment of multiple protein-protein interaction networks called MAPPIN. The latter relies on information available for the proteins in the networks, such as sequence, function, and network topology. Our algorithm is perfectly designed to exploit current multi-core CPU architectures, and has been extensively tested on a real data (eight species). Our experimental results show that MAPPIN significantly outperforms NetCoffee in terms of coverage. Nevertheless, MAPPIN is handicapped by the time required to load the gene annotation file. An extensive comparison versus the pioneering PPI methods also show that MAPPIN is often efficient in terms of coverage, mean entropy, or mean normalized.
由于生物网络建模生物系统的快速发展,大量的生物分子网络产生了越来越多的蛋白质-蛋白质相互作用(PPI)数据。分析蛋白质-蛋白质相互作用网络的目的是在不同物种的分子网络之间找到拓扑和功能(不)相似的区域。对 PPI 网络的研究有可能在分子水平上教我们更多关于生命过程和疾病的知识。尽管已经开发了几种用于多个 PPI 网络对齐的方法,但仍然迫切需要新的网络对齐方法。在本文中,我们提出了一种称为 MAPPIN 的用于多个蛋白质-蛋白质相互作用网络全局对齐的新算法。后者依赖于网络中蛋白质的可用信息,例如序列、功能和网络拓扑。我们的算法是专门为利用当前多核 CPU 架构而设计的,并在真实数据(八种物种)上进行了广泛的测试。我们的实验结果表明,MAPPIN 在覆盖范围方面明显优于 NetCoffee。然而,MAPPIN 受到加载基因注释文件所需时间的限制。与开创性的 PPI 方法的广泛比较也表明,MAPPIN 在覆盖范围、平均熵或平均归一化方面通常是有效的。