Suppr超能文献

利用高效的Memetic 算法进行全球生物网络比对。

Global Biological Network Alignment by Using Efficient Memetic Algorithm.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2016 Nov;13(6):1117-1129. doi: 10.1109/TCBB.2015.2511741. Epub 2015 Dec 23.

Abstract

High-throughput experimental screening techniques have resulted in a large number of biological network data such as protein-protein interactions (PPI) data. The analysis of these data can enhance our understanding of cellular processes. PPI network alignment is one of the comparative analysis methods for analyzing biological networks. Research on PPI networks can identify conserved subgraphs and help us to understand evolutionary trajectories across species. Some evolutionary algorithms have been proposed for coping with PPI network alignment, but most of them are limited by the lower search efficiency due to the lack of the priori knowledge. In this paper, we propose a memetic algorithm, denoted as MeAlgn, to solve the biological network alignment by optimizing an objective function which introduces topological structure and sequence similarities. MeAlign combines genetic algorithm with a local search refinement. The genetic algorithm is to find interesting alignment solution regions, and the local search is to find optimal solutions around the regions. The proposed algorithm first develops a coarse similarity score matrix for initialization and then it uses a specific neighborhood heuristic local search strategy to find an optimal alignment. In MeAlign, the information of topological structure and sequence similarities is used to guide our mapping. Experimental results demonstrate that our algorithm can achieve a better mapping than some state-of-the-art algorithms and it makes a better balance between the network topology and nodes sequence similarities.

摘要

高通量实验筛选技术产生了大量的生物网络数据,如蛋白质-蛋白质相互作用 (PPI) 数据。这些数据的分析可以增强我们对细胞过程的理解。PPI 网络比对是分析生物网络的比较分析方法之一。对 PPI 网络的研究可以识别保守的子图,并帮助我们了解跨物种的进化轨迹。已经提出了一些进化算法来应对 PPI 网络比对,但由于缺乏先验知识,它们大多数受到较低搜索效率的限制。在本文中,我们提出了一种基于遗传算法的 Memetic 算法,记为 MeAlgn,通过优化引入拓扑结构和序列相似性的目标函数来解决生物网络比对问题。MeAlign 将遗传算法与局部搜索细化相结合。遗传算法用于寻找有趣的对齐解区域,而局部搜索则用于在区域周围寻找最优解。该算法首先为初始化生成一个粗糙的相似性评分矩阵,然后使用特定的邻域启发式局部搜索策略来找到最佳的对齐。在 MeAlign 中,拓扑结构和序列相似性的信息被用于指导我们的映射。实验结果表明,我们的算法可以实现比一些最先进算法更好的映射,并且在网络拓扑和节点序列相似性之间取得了更好的平衡。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验