Suppr超能文献

通过稀疏二元匹配识别基因表达数据和药物反应数据之间的“多对多”关系。

Identifying "Many-to-Many" Relationships between Gene-Expression Data and Drug-Response Data via Sparse Binary Matching.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb;17(1):165-176. doi: 10.1109/TCBB.2018.2849708. Epub 2018 Jun 22.

Abstract

Identifying gene-drug patterns is a critical step in pharmacology for unveiling disease mechanisms and drug discovery. The availability of high-throughput technologies accumulates massive large-scale pharmacological and genomic data, and thus provides a new substantial opportunity to deeply understand how the oncogenic genes and the therapeutic drugs relate to each other. However, most previous studies merely used the pharmacological and genomic datasets without any prior knowledge to infer the gene-drug patterns. Here, we proposed a novel network-guided sparse binary matching model (NSBM) to decode these relationships hidden in the datasets. Not only the large-scale gene-expression data and drug-response data are jointly analyzed in our method, but also the additional prior information of genes and drugs are integrated into the form of network-based regularization. The essential structure of the NSBM model is a convex quadratic minimization problem with network-based penalties. It was demonstrated to be superior when compared with two benchmark methods through extensive experiments on both synthetic and empirical data. Posterior validation, including gene-ontology and enrichment analysis, confirmed the effectiveness of NSBM in revealing gene-drug patterns on a large-scale heterogeneous data source.

摘要

鉴定基因-药物模式是药理学中的一个关键步骤,可揭示疾病机制和药物发现。高通量技术的出现积累了大量的大规模药理学和基因组数据,因此为深入了解致癌基因和治疗药物之间的关系提供了新的实质性机会。然而,大多数先前的研究仅仅使用药理学和基因组数据集,而没有任何先验知识来推断基因-药物模式。在这里,我们提出了一种新的基于网络的稀疏二值匹配模型(NSBM)来解码这些隐藏在数据集中的关系。我们的方法不仅联合分析了大规模的基因表达数据和药物反应数据,而且还以基于网络的正则化形式整合了基因和药物的附加先验信息。NSBM 模型的基本结构是一个具有基于网络的惩罚的凸二次最小化问题。通过在合成和经验数据上的广泛实验,与两个基准方法相比,证明了它的优越性。后验验证,包括基因本体论和富集分析,证实了 NSBM 在揭示大规模异质数据源上的基因-药物模式方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验