Suppr超能文献

利用网络传播从化学、基因组和表型数据的综合推断药物-疾病关联。

Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation.

出版信息

BMC Med Genomics. 2013;6 Suppl 3(Suppl 3):S4. doi: 10.1186/1755-8794-6-S3-S4. Epub 2013 Nov 11.

Abstract

BACKGROUND

During the last few years, the knowledge of drug, disease phenotype and protein has been rapidly accumulated and more and more scientists have been drawn the attention to inferring drug-disease associations by computational method. Development of an integrated approach for systematic discovering drug-disease associations by those informational data is an important issue.

METHODS

We combine three different networks of drug, genomic and disease phenotype and assign the weights to the edges from available experimental data and knowledge. Given a specific disease, we use our network propagation approach to infer the drug-disease associations.

RESULTS

We apply prostate cancer and colorectal cancer as our test data. We use the manually curated drug-disease associations from comparative toxicogenomics database to be our benchmark. The ranked results show that our proposed method obtains higher specificity and sensitivity and clearly outperforms previous methods. Our result also show that our method with off-targets information gets higher performance than that with only primary drug targets in both test data.

CONCLUSIONS

We clearly demonstrate the feasibility and benefits of using network-based analyses of chemical, genomic and phenotype data to reveal drug-disease associations. The potential associations inferred by our method provide new perspectives for toxicogenomics and drug reposition evaluation.

摘要

背景

在过去的几年中,药物、疾病表型和蛋白质的知识迅速积累,越来越多的科学家开始关注通过计算方法推断药物-疾病的相关性。开发一种综合方法,通过这些信息数据系统地发现药物-疾病的相关性是一个重要的问题。

方法

我们结合了药物、基因组和疾病表型三个不同的网络,并根据可用的实验数据和知识为边分配权重。对于特定的疾病,我们使用我们的网络传播方法来推断药物-疾病的相关性。

结果

我们将前列腺癌和结直肠癌作为我们的测试数据。我们使用来自比较毒理学基因组数据库的人工整理的药物-疾病相关性作为我们的基准。排名结果表明,我们提出的方法具有更高的特异性和敏感性,明显优于以前的方法。我们的结果还表明,在这两种测试数据中,与仅使用主要药物靶点相比,包含非靶点信息的方法的性能更高。

结论

我们清楚地证明了使用基于网络的化学、基因组和表型数据分析来揭示药物-疾病相关性的可行性和益处。我们的方法推断出的潜在相关性为毒理学基因组学和药物再定位评估提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b50/3980383/87923d86fe39/1755-8794-6-S3-S4-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验