Suppr超能文献

基于自然启发的全基因组关联研究中的多目标基因上位性解析。

Nature-Inspired Multiobjective Epistasis Elucidation from Genome-Wide Association Studies.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb;17(1):226-237. doi: 10.1109/TCBB.2018.2849759. Epub 2018 Jun 22.

Abstract

In recent years, the detection of epistatic interactions of multiple genetic variants on the causes of complex diseases brings a significant challenge in genome-wide association studies (GWAS). However, most of the existing methods still suffer from algorithmic limitations such as single-objective optimization, intensive computational requirement, and premature convergence. In this paper, we propose and formulate an epistatic interaction multi-objective artificial bee colony algorithm based on decomposition (EIMOABC/D) to address those problems for genetic interaction detection in genome-wide association studies. First, to direct the genetic interaction detection, two objective functions are formulated to characterize various epistatic models; rank probability model is proposed to sort each population into different nondomination levels based on the fast nondominated sorting approach. After that, the mutual information based local search algorithm is proposed to guide the population search for disease model evaluations in an unbiased manner. To validate the effectiveness of EIMOABC/D, we compare EIMOABC/D against seven state-of-the-art methods on 77 epistatic models including eight small-scale epistatic models with marginal effects, eight large-scale epistatic models with marginal effects, 60 large-scale epistatic models without any marginal effect, and one case study. The experimental results indicate that our proposed algorithm EIMOABC/D outperforms seven state-of-the-art methods on those epistatic models. Furthermore, time complexity analysis and parameter analysis are conducted to demonstrate various properties of our proposed algorithm.

摘要

近年来,对复杂疾病病因的多个遗传变异的上位性相互作用的检测给全基因组关联研究(GWAS)带来了重大挑战。然而,大多数现有的方法仍然存在算法局限性,例如单目标优化、密集的计算需求和过早收敛。在本文中,我们提出并制定了一种基于分解的上位性相互作用多目标人工蜂群算法(EIMOABC/D),以解决遗传相互作用检测中存在的问题。首先,为了指导遗传相互作用检测,我们制定了两个目标函数来描述各种上位性模型;提出了秩概率模型,以便根据快速非支配排序方法将每个种群分为不同的非支配水平。之后,提出了基于互信息的局部搜索算法,以无偏的方式指导种群搜索疾病模型评估。为了验证 EIMOABC/D 的有效性,我们在 77 个上位性模型上比较了 EIMOABC/D 与七种最先进的方法,包括 8 个具有边际效应的小规模上位性模型、8 个具有边际效应的大规模上位性模型、60 个没有任何边际效应的大规模上位性模型和一个案例研究。实验结果表明,我们提出的算法 EIMOABC/D 在这些上位性模型上优于七种最先进的方法。此外,还进行了时间复杂度分析和参数分析,以证明我们提出的算法的各种特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验