IEEE J Biomed Health Inform. 2019 Jan;23(1):123-131. doi: 10.1109/JBHI.2018.2792404. Epub 2018 Jan 12.
This paper presents a fast approach to detect QRS complexes based on a simple analysis of the temporal ECG structure.
The ECG is processed through several steps involving noise removal, feature detection, and feature analysis. The obtained feature set, which holds most of the ECG information while requiring low data storage, constitutes a lossy compressed version of the ECG.
The experiments, performed using 12 different ECG databases, emphasize the advantages of our proposal. For example, 130-min ECG recordings are processed in average in 0.77 s. Also, sensitivities and positive predictions surpass 99.9% in some databases, and a global data saving of 90.35% is achieved.
When compared to other approaches, this study offers a parameterless and computationally efficient alternative for QRS complex detection and lossy ECG compression. Moreover, some of the presented techniques are general enough to be used by other ECG analysis tools. Finally, the documented source code corresponding to this study is publicly available.
本文提出了一种快速检测 QRS 波群的方法,该方法基于对 ECG 时间结构的简单分析。
对 ECG 进行了几个步骤的处理,包括噪声去除、特征检测和特征分析。所得到的特征集包含了大部分的 ECG 信息,同时需要的存储空间较小,构成了 ECG 的有损压缩版本。
使用 12 个不同的 ECG 数据库进行的实验强调了我们建议的优势。例如,平均而言,130 分钟的 ECG 记录在 0.77 秒内处理完毕。此外,在一些数据库中,灵敏度和阳性预测超过 99.9%,并且实现了 90.35%的全局数据节省。
与其他方法相比,本研究为 QRS 波群检测和 ECG 有损压缩提供了一种无参数且计算效率高的替代方案。此外,所提出的一些技术足够通用,可以被其他 ECG 分析工具使用。最后,本研究的文档化源代码是公开可用的。