Suppr超能文献

基于稀疏低秩表示的面向不完整数据的多视图降维

Incomplete-Data Oriented Multiview Dimension Reduction via Sparse Low-Rank Representation.

作者信息

Yang Wanqi, Shi Yinghuan, Gao Yang, Wang Lei, Yang Ming

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6276-6291. doi: 10.1109/TNNLS.2018.2828699. Epub 2018 May 17.

Abstract

For dimension reduction on multiview data, most of the previous studies implicitly take an assumption that all samples are completed in all views. Nevertheless, this assumption could often be violated in real applications due to the presence of noise, limited access to data, equipment malfunction, and so on. Most of the previous methods will cease to work when missing values in one or multiple views occur, thus an incomplete-data oriented dimension reduction becomes an important issue. To this end, we mathematically formulate the above-mentioned issue as sparse low-rank representation through multiview subspace (SRRS) learning to impute missing values, by jointly measuring intraview relations (via sparse low-rank representation) and interview relations (through common subspace representation). Moreover, by exploiting various subspace priors in the proposed SRRS formulation, we develop three novel dimension reduction methods for incomplete multiview data: 1) multiview subspace learning via graph embedding; 2) multiview subspace learning via structured sparsity; and 3) sparse multiview feature selection via rank minimization. For each of them, the objective function and the algorithm to solve the resulting optimization problem are elaborated, respectively. We perform extensive experiments to investigate their performance on three types of tasks including data recovery, clustering, and classification. Both two toy examples (i.e., Swiss roll and -curve) and four real-world data sets (i.e., face images, multisource news, multicamera activity, and multimodality neuroimaging data) are systematically tested. As demonstrated, our methods achieve the performance superior to that of the state-of-the-art comparable methods. Also, the results clearly show the advantage of integrating the sparsity and low-rankness over using each of them separately.

摘要

对于多视图数据的降维,大多数先前的研究隐含地假设所有样本在所有视图中都是完整的。然而,由于存在噪声、数据访问受限、设备故障等原因,在实际应用中这个假设常常会被违反。当一个或多个视图中出现缺失值时,大多数先前的方法将不再起作用,因此面向不完整数据的降维成为一个重要问题。为此,我们通过多视图子空间(SRRS)学习将上述问题数学地表述为稀疏低秩表示,以插补缺失值,通过联合测量视图内关系(通过稀疏低秩表示)和视图间关系(通过公共子空间表示)。此外,通过在所提出的SRRS公式中利用各种子空间先验,我们为不完整的多视图数据开发了三种新颖的降维方法:1)通过图嵌入的多视图子空间学习;2)通过结构化稀疏性的多视图子空间学习;3)通过秩最小化的稀疏多视图特征选择。对于每一种方法,分别阐述了目标函数和解决由此产生的优化问题的算法。我们进行了广泛的实验来研究它们在包括数据恢复、聚类和分类在内的三种类型任务上的性能。系统地测试了两个玩具示例(即瑞士卷和 -曲线)和四个真实世界数据集(即面部图像、多源新闻、多摄像头活动和多模态神经成像数据)。结果表明,我们的方法取得了优于现有可比方法的性能。此外,结果清楚地表明了将稀疏性和低秩性结合起来使用比单独使用它们各自的优势。

相似文献

1
Incomplete-Data Oriented Multiview Dimension Reduction via Sparse Low-Rank Representation.基于稀疏低秩表示的面向不完整数据的多视图降维
IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6276-6291. doi: 10.1109/TNNLS.2018.2828699. Epub 2018 May 17.
2
Multiview Subspace Clustering via Tensorial t-Product Representation.基于张量t-积表示的多视图子空间聚类
IEEE Trans Neural Netw Learn Syst. 2019 Mar;30(3):851-864. doi: 10.1109/TNNLS.2018.2851444. Epub 2018 Jul 27.
3
Robust Kernelized Multiview Self-Representation for Subspace Clustering.用于子空间聚类的鲁棒核化多视图自表示
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):868-881. doi: 10.1109/TNNLS.2020.2979685. Epub 2021 Feb 4.
4
MRM-Lasso: A Sparse Multiview Feature Selection Method via Low-Rank Analysis.MRM-Lasso:基于低秩分析的稀疏多视图特征选择方法。
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2801-15. doi: 10.1109/TNNLS.2015.2396937. Epub 2015 Feb 19.
5
Iterative Multiview Subspace Learning for Unpaired Multiview Clustering.用于未配对多视图聚类的迭代多视图子空间学习
IEEE Trans Neural Netw Learn Syst. 2024 Oct;35(10):14848-14862. doi: 10.1109/TNNLS.2023.3281739. Epub 2024 Oct 7.
6
Low-Rank Tensor Regularized Views Recovery for Incomplete Multiview Clustering.用于不完全多视图聚类的低秩张量正则化视图恢复
IEEE Trans Neural Netw Learn Syst. 2024 Jul;35(7):9312-9324. doi: 10.1109/TNNLS.2022.3232538. Epub 2024 Jul 8.
7
Incomplete Multiview Spectral Clustering With Adaptive Graph Learning.基于自适应图学习的不完全多视图谱聚类
IEEE Trans Cybern. 2020 Apr;50(4):1418-1429. doi: 10.1109/TCYB.2018.2884715. Epub 2018 Dec 24.
8
Multiview Spectral Clustering via Structured Low-Rank Matrix Factorization.基于结构化低秩矩阵分解的多视角谱聚类
IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4833-4843. doi: 10.1109/TNNLS.2017.2777489. Epub 2018 Jan 4.
9
Multiview Clustering via Unified and View-Specific Embeddings Learning.通过统一和特定视图嵌入学习进行多视图聚类
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5541-5553. doi: 10.1109/TNNLS.2017.2786743. Epub 2018 Mar 7.
10
Augmented Sparse Representation for Incomplete Multiview Clustering.用于不完整多视图聚类的增强稀疏表示
IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):4058-4071. doi: 10.1109/TNNLS.2022.3201699. Epub 2024 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验