Chen Jie, Yang Shengxiang, Peng Xi, Peng Dezhong, Wang Zhu
IEEE Trans Neural Netw Learn Syst. 2024 Mar;35(3):4058-4071. doi: 10.1109/TNNLS.2022.3201699. Epub 2024 Feb 29.
Incomplete multiview data are collected from multiple sources or characterized by multiple modalities, where the features of some samples or some views may be missing. Incomplete multiview clustering (IMVC) aims to partition the data into different groups by taking full advantage of the complementary information from multiple incomplete views. Most existing methods based on matrix factorization or subspace learning attempt to recover the missing views or perform imputation of the missing features to improve clustering performance. However, this problem is intractable due to a lack of prior knowledge, e.g., label information or data distribution, especially when the missing views or features are completely damaged. In this article, we proposed an augmented sparse representation (ASR) method for IMVC. We first introduce a discriminative sparse representation learning (DSRL) model, which learns the sparse representations of multiple views as applied to measure the similarity of the existing features. The DSRL model explores complementary and consistent information by integrating the sparse regularization item and a consensus regularization item, respectively. Simultaneously, it learns a discriminative dictionary from the original samples. The sparsity constrained optimization problem in the DSRL model can be efficiently solved by the alternating direction method of multipliers (ADMM). Then, we present a similarity fusion scheme, namely, a sparsity augmented fusion of sparse representations, to obtain a sparsity augmented similarity matrix across different views for spectral clustering. Experimental results on several datasets demonstrate the effectiveness of the proposed ASR method for IMVC.
不完整的多视图数据是从多个源收集的或以多种模态为特征的,其中一些样本或一些视图的特征可能会缺失。不完整多视图聚类(IMVC)旨在通过充分利用来自多个不完整视图的互补信息将数据划分为不同的组。大多数基于矩阵分解或子空间学习的现有方法试图恢复缺失的视图或对缺失特征进行插补以提高聚类性能。然而,由于缺乏先验知识,例如标签信息或数据分布,这个问题很难处理,特别是当缺失的视图或特征完全损坏时。在本文中,我们提出了一种用于IMVC的增强稀疏表示(ASR)方法。我们首先引入了一种判别式稀疏表示学习(DSRL)模型,该模型学习多个视图的稀疏表示,用于衡量现有特征的相似性。DSRL模型分别通过整合稀疏正则化项和一致性正则化项来探索互补和一致的信息。同时,它从原始样本中学习一个判别式字典。DSRL模型中的稀疏性约束优化问题可以通过乘子交替方向法(ADMM)有效地解决。然后,我们提出了一种相似性融合方案,即稀疏表示的稀疏性增强融合,以获得用于谱聚类的跨不同视图的稀疏性增强相似性矩阵。在几个数据集上的实验结果证明了所提出的ASR方法用于IMVC的有效性。